TY - GEN A1 - Bresch, Harald A1 - Meyer-Plath, Asmus A1 - Burgdorf, T. A1 - Packroff, R. A1 - Apel, P. A1 - Adolf, P. A1 - Jesse, A. A1 - Leuschner, C. A1 - Bosse, H. A1 - Dubbert, W. A1 - Epp, A. A1 - Gebel, T. A1 - Götz, M. A1 - Herzberg, F. A1 - Hornbogen, T. A1 - Kersten, N. A1 - Kneuer, C. A1 - Kujath, P. A1 - Pipke, R. A1 - Plitzko, s. A1 - Schlesier, K. A1 - Schröder, F. A1 - Schwirn, K. A1 - Sommer, Y. A1 - Tentschert, J. A1 - Völker, D. A1 - Wolf, T. T1 - 1. Bilanz zur gemeinsamen Forschungsstrategie der Ressortforschungseinrichtungen des Bundes 'Nanotechnologie - Gesundheits- und Umweltrisiken von Nanomaterialien' (2007 - 2011) KW - Nanotechnologie KW - Nanopartikel KW - Nanomaterial KW - Bundesoberbehörden KW - Forschungsstrategie PY - 2013 SP - 1 EP - 124 CY - Berlin AN - OPUS4-28538 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Lexow, Jürgen A1 - Sturm, Heinz A1 - Packroff, R. A1 - Völker, D. A1 - Mutz, D. A1 - Bosse, H. A1 - Gebel, T. A1 - Pipke, R. A1 - Marx, R. A1 - Plitzko, S. A1 - Niesmann, K. A1 - Meyer-Plath, A. A1 - Burgdorf, T. A1 - Engel, N. A1 - Epp, A. A1 - Haase, A. A1 - Herzberg, F. A1 - Laux, P. A1 - Oberemm, A. A1 - Sommer, Y. A1 - Tentschert, J. A1 - Ulm, G. A1 - Schwirn, K. A1 - Liesegang, C. T1 - Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich T1 - Nanomaterials and other advanced materials: application safety and environmental compatibility N2 - Mit einer langfristigen Forschungsstrategie begleiten die für die Sicherheit von Mensch und Umwelt zuständigen Bundesoberbehörden (Umweltbundesamt, Bundesinstitut für Risikobe-wertung, Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Bundesanstalt für Materialfor-schung und -prüfung und Physikalisch-Technische Bundesanstalt) die rasch voranschreiten-de Entwicklung neuer Materialien unter den Gesichtspunkten des Arbeits-, Verbraucher- und Umweltschutzes. Die Strategie steht daher in enger Verbindung zu den öffentlichen Förder-programmen für Nanomaterialien und andere innovative Werkstoffe, z. B. des BMBF („Vom Material zur Innovation“) und der EU („Horizon 2020“). Die Forschungsstrategie baut auf den bisherigen Ergebnissen der 2008 begonnenen und 2013 erstmals bilanzierten gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanotechnologie - Gesundheits- und Umweltrisiken von Nanomaterialien"1 auf und erweitert den Blickwinkel auch auf andere Materialinnovationen, bei denen vergleichbare Risiken für Mensch und Umwelt bestehen oder abgeklärt werden müssen. Darüber hinaus greift sie die Idee „anwendungssichere chemische Produkte“2 aus der Initiative „Neue Qualität der Arbeit“ (INQA) des Bundesministeriums für Arbeit und Soziales (BMAS) und das Konzept der nach-haltigen Chemie3 auf, das vom Bundesministerium für Umwelt, Naturschutz, Bau und Reak-torsicherheit (BMUB) unterstützt wird. Durch eine anwendungssichere und umweltverträgli-che Gestaltung innovativer Materialien und ihrer Folgeprodukte sollen nicht akzeptable Risi-ken für Mensch und Umwelt von Anfang an weitgehend ausgeschlossen werden. Dies kann erreicht werden durch 1. die Verwendung sicherer Materialien ohne Gefahreneigenschaften für Mensch und Umwelt (direkte Anwendungssicherheit) oder 2. eine Produktgestaltung, die über den gesamten Lebenszyklus emissionsarm und umweltverträglich ist (integrierte Anwendungssicherheit) oder 3. eine Unterstützung des Anwenders (product stewardship) durch den Hersteller bei technischen, organisatorischen und persönlichen Schutzmaßnahmen zur sicheren Verwendung und Entsorgung des Produktes (unterstützte Anwendungssicherheit). Die Fortschreibung der Forschungsstrategie soll als Bestandteil des Nanoaktionsplans 2020 der Bundesregierung Beiträge der Ressortforschung zu folgenden Schwerpunkten leisten: • Charakterisierung und Bewertung der Risiken von Materialinnovationen • Unterstützung von Forschungseinrichtungen und Unternehmen • Fortschreiben von Rechtsvorschriften und Praxisempfehlungen 1 http://www.baua.de/nn_47716/de/Themen-von-A-Z/Gefahrstoffe/Nanotechnologie/pdf/Forschungsstrategie.pdf 2 http://www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/Nachhaltige-Chemie/Nachhaltige-Chemie.html 3 http://www.umweltbundesamt.de/themen/chemikalien/chemikalien-management/nachhaltige-chemie 2 • Gesellschaftliche Akzeptanz Die Forschungsstrategie soll mit Projekten und anderen forschungsnahen Aktivitäten umge-setzt werden. Dies umfasst die eigene Forschung der Häuser, die extramurale Ausschrei-bung und Vergabe von Forschungsdienstleistungen sowie die Beteiligung an vorwiegend öffentlich geförderten Drittmittelprojekten. Hinzu kommen Aktivitäten im Rahmen der Politik-beratung und der hoheitlichen Aufgaben. Mit inter- und transdisziplinären Ansätzen soll die Risiko- und Sicherheitsforschung enger mit der Innovationsforschung und Materialentwick-lung verknüpft werden. Die Forschungsstrategie ist aufgrund der raschen Entwicklungen auf diesem Gebiet für den Zeitraum bis 2020 angelegt. Die Forschungsziele adressieren die in diesem Zeitraum voraussichtlich umsetzbaren Forschungsansätze. Die Forschungsstrategie wird durch einen Arbeitskreis begleitet und spätestens mit Ablauf des Nanoaktionsplans 2020 evaluiert und angepasst. KW - Forschungsstrategie KW - Bundesoberbehörden KW - Nanomaterialien KW - Innovative Werkstoffe KW - Nano PY - 2016 UR - https://www.bam.de/_SharedDocs/DE/Downloads/nano-forschungsstrategie-2016.pdf?__blob=publicationFile&v=3 UR - http://www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/Nanotechnologie/pdf/Fortschreibung-Forschungsstrategie.pdf?__blob=publicationFile&v=3 UR - http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Nanotechnologie/forschungsstrategie_bundesoberbehoerden_de_bf.pdf SP - 1 EP - 28 PB - UBA/BfR/BAuA/BAM/PTB CY - Berlin AN - OPUS4-37526 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwirn, K. A1 - Völker, D. A1 - Ahtiainen, J. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Kuhlbusch, T. T1 - OECD Test Guidelines development for chemicals safety assessment of nanomaterials N2 - The OECD test guidelines (TGs) for testing chemicals have been widely used for regulatory purposes all over the world since the establishment of the Mutual Acceptance of Data (MAD) principle in 1984. This MAD principle ensures that, if a chemical is tested under the Good Laboratory Practice (GLP) conditions accordingly to an OECD TG, the data should be accepted in all OECD countries. The TGs have been developed, harmonized, internationally validated (round robin tests) and adopted by OECD countries to be used for the physical-chemical characterisation, fate estimation, and hazard identification for risk assessment of various chemicals. In addition to the TGs, OECD Guidance Documents (GDs) usually provide guidance on how to use TGs and how to interpret the results. These GDs do not have to be fully experimentally validated, and hence they are not under MAD, but they are based on relevant published scientific research. But are the existing TGs and the related GDs applicable and adequate for the regulatory testing of nanomaterials? In general, it is accepted that most of the "endpoints" or more precisely measurement variables are applicable also for nanomaterials. However, for some endpoints new or amended TGs are needed. In addition, several GDs are needed to give more precise advice on the test performance in order to gain regulatory relevant data on nanomaterials. The poster will present the status quo on recent TGs and GDs development for nanomaterials at OECD level with relevance for physical-chemical characterisation. Emphasis will be given to the proposed OECD TG on particle size and size distribution for manufactured nanomaterials. The development of such a TG is of special importance as particle size and size distribution is considered as major information for nanomaterial identification and characterization. A reliable and reproducible characterisation of particle size and size distribution is also needed for chemicals risk assessment of nanomaterials, for instance to interpret and compare test results and - in future – to forecast interaction and effects of nanomaterials. The presented poster will illustrate the way from the idea for a new TG and new GD to an accepted OECD TG/GD. T2 - BAM-PTB Workshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Nano KW - OECD KW - Nanomaterials KW - Test Guideline KW - Prüfrichtlinie PY - 2018 AN - OPUS4-45108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Bachmann, V. A1 - Kämpf, K. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guideline on particle size and size distribution of manufactured nanomaterials N2 - The properties of nanomaterials are influenced not only by their chemical composition but also by physical properties (such as size, geometry and crystal structure). For the reliable determination and assessment of behaviour and effects of nanomaterials as well as for the determination of the exposure of humans and environment a comprehensive physical-chemical characterization of nanomaterials is essential. This is an important prerequisite to identify them as nanomaterials and to interpret and compare test results and - in future – to forecast interaction and effects of nanomaterials. In 2006, the OECD launched a sponsorship program for the testing of nanomaterials in which 11 nanomaterials were thoroughly investigated using a variety of methods. The aim of the project was, among other things, to find out where problems occur and where there are gaps in the measurement and test procedures and where are changes required. An important outcome of the sponsorship program was the finding that the OECD Test Guidelines should in several cases be extended to the specific needs in testing of nanomaterials. The existing standardized test methods of the OECD for physical-chemical characterization have not been developed for nanomaterials in particular. A high demand for an extension of the test guidelines was identified. Germany complied with the OECD's request in 2017 and has agreed to extend the “Test Guideline on Particle Size Distribution / Fiber Length and Diameter Distributions Test Guideline” for Manufactured Nanomaterials (MN). UBA commissioned BAM and BAuA with the preparation of the Test Guideline. The aim of the project is the development of a harmonized test protocol for a valid and reproducible determination of particle size and size distribution which is one of the most relevant physical-chemical properties for MNs. Different measuring methods provide different results for the size distribution of the particles. This is caused by the different measuring principles of the methods. Each method measures a specific parameter that ultimately determines particle size. First, the measured quantity differs for each method (Scattered light intensity, 2D image / projection, electric mobility, etc.). Second, the calculated diameters of the MN may differ (Feret Diameter, Area Projection, Mobility Diameter, Aerodynamic Diameter, Hydrodynamic Diameter). Third, a measuring method provides a size distribution which is measured either mass-based, surface-based or number-based. A conversion between the results requires additional parameters and thus possibly increases the measurement error. In addition to the technical differences, the individual parameters are strongly influenced by the structure and material of the nanoparticles. For example, a surface functionalization can lead to very different results in the size distribution. The suitability of measurement methods differs with the material of the MN. As a result, two very different results can be measured for the particle size distribution using two different methods, which are nevertheless both correct. Several large projects in recent years therefore concluded that nanomaterials should be characterized by at least two complementary method. Imaging techniques are regarded as one of these methods for the characterization, the complementary methods are supposed to be statistical methods. The different results for the size distribution of nanomaterials become problematic for the registration of new MN. A comparable and reproducible size distribution is a prerequisite for a standardized registration. In the future, the particle size distribution in the EU will also decide on the classification of a substance as a nanomaterial or as a non-nanomaterial. Especially in borderline cases, a standardized and comparable measurement methodology is therefore essential. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Guideline KW - Particle size distribution KW - Nano KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 U6 - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 125 EP - 132 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Bachmann, V. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guideline on particle size and particle size distribution of manufactured nanomaterials: simultaneous measurement of length and diameter of fibers N2 - The new OECD test guideline will address the following four main steps in the determination of the length and width distributions of fibers: sample preparation, image acquisition, data evaluation and uncertainty analysis. As the sample preparation has to be optimized for each material, general quality criteria will be given in the protocol. For full visibility of a fiber the appropriate resolution has to be chosen. In the data evaluation the length and diameter of each fiber will be determined concurrently to allow for application of different regulatory definitions. The quality of the results critically depends on the sample preparation as well as the data evaluation. In this step the classification rules have to be formulated and followed accurately in order to optimize reproducibility of the method. The SOP will be validated in an international round robin test, which is planned for 2018/2019. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 U6 - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 302 EP - 302 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwirn, K. A1 - Völker, D. A1 - Ahtianinen, J. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Kuhlbusch, T. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guidelines development for chemicals safety assessment of nanomaterials N2 - The OECD test guidelines (TGs) for testing chemicals have been widely used for regulatory purposes all over the world since the establishment of the Mutual Acceptance of Data (MAD) principle in 1984. This MAD principle ensures that, if a chemical is tested under the Good Laboratory Practice (GLP) conditions accordingly to an OECD TG, the data should be accepted in all OECD countries. The TGs have been developed, harmonized, internationally validated (round robin tests) and adopted by OECD countries to be used for the physical-chemical characterisation, fate estimation, and hazard identification for risk assessment of various chemicals. In addition to the TGs, OECD Guidance Documents (GDs) usually provide guidance on how to use TGs and how to interpret the results. These GDs do not have to be fully experimentally validated, and hence they are not under MAD, but they are based on relevant published scientific research. But are the existing TGs and the related GDs applicable and adequate for the regulatory testing of nanomaterials? In general, for nanomaterials it is accepted that most of the "endpoints" or more precisely measurement variables are applicable. However, for some endpoints new or amended TGs are needed. In addition, several GDs are needed to give more precise advice on the test performance in order to gain regulatory relevant data on nanomaterials. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Nano KW - Guideline KW - Nanomaterials KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 U6 - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 279 EP - 279 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -