TY - JOUR A1 - Zscherpel, Uwe A1 - Schumacher, David A1 - Redmer, Bernhard A1 - Ewert, Uwe A1 - Ullberg, C. A1 - Weber, N. A1 - Pantsar, T. T1 - Digital radiology with photon counting detectors N2 - The progress in X-ray detector electronics (sensitivity and speed) allows meanwhile fast single photon detection by a matrix detector. Combined photon counting and energy discrimination is implemented in the electronic circuit of each detector pixel. The company XCounter developed detectors based on CdTe single crystals, which can be tiled to larger areas and have a pixel size of 100ìm. The largest area available in beginning of 2014 is 50x75 mm². These detectors have very promising properties, which make them very suitable for NDT applications: 1. A CdTe attenuation layer of 750 µm thickness allows efficient X-ray detection up to ca. 300 keV. In counting mode only photon noise is important; no other detector noise sources need to be considered. There is no Offset signal without radiation. 2. Each of the detector pixels has two energy thresholds. These can be used for dual energy imaging for materials separation. Also the suppression of scattered radiation by energy thresholding will improve the image contrast sensitivity. First experiments will be presented which demonstrate the advantages of this new detector technology over the conventional charge integrating detectors. A challenge is the development of a modified detector calibration procedure, which becomes critical at longer exposure times. T2 - ECNDT 2014 - 11th European conference on non-destructive testing CY - Prague, Czech Republic DA - 06.10.2014 KW - Materials characterization KW - Radiographic testing (RT) KW - Digital detector array KW - Photo counting KW - Image quality KW - Calibration KW - Dual-energy KW - Energy discrimination KW - Digital radiology KW - Detectors PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-323063 UR - https://www.ndt.net/?id=16709 SN - 1435-4934 N1 - Geburtsname von Schumacher, David: Walter, D. - Birth name of Schumacher, David: Walter, D. VL - 19 IS - 12 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-32306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Sharma, R. A1 - Grager, J.-C. A1 - Schrapp, M. T1 - Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors N2 - Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction. KW - X-ray computed tomography KW - Photon counting detector KW - CdTe sensor KW - Non-destructive testing KW - Beam hardening KW - Scattered radiation PY - 2018 UR - http://iopscience.iop.org/article/10.1088/1361-6501/aabef7/meta U6 - https://doi.org/10.1088/1361-6501/aabef7 SN - 1361-6501 VL - 29 IS - 7 SP - 075101, 1 EP - 12 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-44959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Antin, K.-N. A1 - Zscherpel, Uwe A1 - Vilaça, P. T1 - Application of different X-ray techniques to improve in-service carbon fiber reinforced rope inspection N2 - Carbon fiber reinforced polymer ropes are gaining in significance in the fields of civil engineering and hoisting applications. Thus, methods of non-destructive testing (NDT) need to be developed and evaluated with respect to new challenges and types of defects. Particularly important is the development of in-service testing solutions which allow the integration in global online monitoring systems. Conventional methods like electrical resistivity or strain measurements using optical fibers are already in use. This study investigates the possibility of using various X-ray techniques to increase the reliability and significance of NDT and their applicability to in-service testing. Conventional film radiography is the most common technique; however, even after image enhancement of the digitized film, this technique lacks contrast sensitivity and dynamic range compared to digital detector array (DDA) radiography. The DDA radiography is a highly sensitive method; yet, the limitation is that it delivers 2D images of 3D objects. By the use of co-planar translational laminography the detectability of planar defects is superior to 2D methods due to multiple projection angles. Apart from this, it can be used on-site due to a rather simple setup and robust equipment. In this work two photon counting detectors (PCD) with different sensor materials (Si and CdTe) were used. The results show that the resolution and defect recognition is lower in case of DDA radiography and laminography using PCDs compared to high-resolution computed tomography. However, the DDA radiography and laminography are sensitive enough to both fiber breakage and delaminations and can be significantly advantageous in terms of measurement time and adaptability for on-site monitoring. KW - X-ray imaging KW - Digital radiography KW - Co-planar translational laminography KW - Computed tomography KW - Photon counting detectors KW - Carbon fiber reinforced polymer KW - Rope PY - 2017 U6 - https://doi.org/10.1007/s10921-017-0441-5 SN - 0195-9298 SN - 1573-4862 VL - 36 IS - 4 SP - Paper 62, 1 PB - Springer International Publishing AG CY - Cham, Switzerland AN - OPUS4-41781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ou, D. A1 - Schumacher, David A1 - Zscherpel, Uwe A1 - Xiao, Y. T1 - Dual-energy materials characterization methods for laminography image enhancement based on photon counting detector N2 - Laminography is a widely used NDT technique for large flat object which cannot be investigated by traditional computed tomography. However, due to the limited scanning angle of laminography, the reconstructed image has more artifact interference, which seriously affects the reconstructed image quality. Reducing artifacts of the laminography image and enhancing the images have become important research effort. In this paper, we present dual-energy materials characterization methods based on photon counting detectors to reduce artifacts and enhance image for laminography. The photon counting detector used in this study allows the setting of two independent energy thresholds in order to acquire dual-energy images for laminography from a single scan. The dual energy imaging methods of basis material decomposition (BMD) and weighted logarithmic subtraction (WLS) were studied in the paper with respect to laminography image enhancement. A fast decomposition algorithm on laminographic projection domain with approximating the inverse dual-energy equations to calculate the thickness of basic materials was used in the BMD dual-energy imaging methods. The experimental results show that the BMD method can characterize materials and enhance features of the basic material within the laminographic dataset. In the WLS method, a linear operation was applied on dual-energy images reconstruction directly, which can eliminate the attenuation of one specific material in the resultant image by setting an appropriate weighting factor. In our experiments. WLS method was used successfully to eliminate the strong artifacts generated by the special material and enhance the images. Dual-energy materials characterization methods based on photon counting detectors show potential applications in laminography. KW - Photon Counting Detectors KW - Dual Energy Imaging KW - Data Processing KW - X-ray PY - 2019 U6 - https://doi.org/10.1088/1748-0221/14/02/P02018 SN - 1748-0221 VL - 14 SP - P02018, 1 EP - 13 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-47573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -