TY - JOUR A1 - Schartel, Bernhard A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Morys, Michael A1 - Böhning, Martin A1 - Rybak, Thomas T1 - Multilayer graphene rubber nanocomposites N2 - Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m²/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development. T2 - TOP 2016, VIII International Conference on “Times of Polymers and Composites” CY - Naples, Italy DA - 19.06.2016 KW - Graphene KW - Nanocomposite KW - Rubber PY - 2016 SN - 978-0-7354-1390-0 U6 - https://doi.org/10.1063/1.4949621 SN - 0094-243X SN - 1551-7616 VL - 1736 SP - 020046, 1 EP - 4 PB - AIP AN - OPUS4-36864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Morys, Michael A1 - Schartel, Bernhard T1 - Multilayer graphene/chlorine-isobutene-isoprene rubber nanocomposites: the effect of dispersion N2 - Multilayer graphene (MLG) is composed of approximately 10 sheets of graphene. It is a promising nanofiller just starting to become commercially available. The Dispersion of the nanofiller is essential to exploit the properties of the nanocomposites and is dependent on the preparation method. In this study, direct incorporation of 3 parts per hundred of rubber (phr) MLG into chlorine-isobutene- isoprene rubber (CIIR) on a two-roll mill did not result in substantial enhancement of the material properties. In contrast, by pre-mixing the MLG (3 phr) with CIIR using an ultrasonically assisted solution mixing procedure followed by two-roll milling, the properties (rheological, curing, and mechanical) were improved substantially compared with the MLG/CIIR nanocomposites mixed only on the mill. The Young’s moduli of the nanocomposites mixed in solution increased by 38%. The CIIR/MLG nanocomposites produced via solution showed superior durability against weathering exposure. KW - Multilayer graphene KW - Nanocomposite KW - Dispersion KW - Rubber PY - 2016 U6 - https://doi.org/10.1002/pat.3740 SN - 1042-7147 SN - 1099-1581 VL - 27 IS - 7 SP - 872 EP - 881 PB - Wiley AN - OPUS4-36866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Rybak, Thomas A1 - Schartel, Bernhard T1 - Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites N2 - High loadings of carbon black (CB) are usually used to achieve the properties demanded of rubber compounds. In recent years, distinct nanoparticles have been investigated to replace CB in whole or in part, in order to reduce the necessary filler content or to improve performance. Multilayer graphene (MLG) is a nanoparticle made of just 10 graphene sheets and has recently become commercially available for mass-product nanocomposites. Three phr (part for hundred rubbers) of MLG are added to chlorine isobutyl isoprene rubber (CIIR)/CB composites in order to replace part of the CB. The incorporation of just 3 phr MLG triples the Young’s modulus of CIIR; the same effect is obtained with 20 phr CB. The simultaneous presence of three MLG and CB also delivers remarkable properties, e.g. adding three MLG and 20 phr CB increased the hardness as much as adding 40 phr CB. A comprehensive study is presented, showing the influence on a variety of mechanical properties. The potential of the MLG/CB combination is illustrated to reduce the filler content or to boost performance, respectively. Apart from the remarkable mechanical properties, the CIIR/CB/MLG nanocomposites showed an increase in weathering resistance. KW - nanocomposites KW - rubber KW - multilayer graphene KW - carbon black PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-358569 SN - 2073-4360 VL - 8 SP - 95 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Multifunctional multilayer graphene/elastomer nanocomposites N2 - Elastomers are usually reinforced and employed in different applications. Various different nanoparticles, including layered silicates, carbon nanotubes, and expanded graphite, are currently being used as nanofiller. Multilayer Graphene (MLG) is proposed as promising nanofiller to improve the functional properties of Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR) and Styrene–Butadiene Rubber (SBR) at low concentrations. MLG is constituted by only approximately 10 graphene sheets. Nanocomposites with extremely low MLG content (3 phr) showed evident improvement in rheological, mechanical and curing properties. The Young's modulus of the nanocomposites increased more than twice in comparison with the unfilled rubbers. MLG also improved the weathering resistance of the different rubbers. The nanocomposites conserved their initial mechanical properties against weathering exposure. KW - Elastomer KW - Nanocomposite KW - Multilayer graphene PY - 2015 U6 - https://doi.org/10.1016/j.eurpolymj.2015.07.050 SN - 0014-3057 SN - 1873-1945 VL - 71 SP - 99 EP - 113 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -