TY - JOUR A1 - Flores, E. A1 - Idrees, F. A1 - Moussay, P. A1 - Viallon, J. A1 - Wielgosz, R. A1 - Fernández, T. A1 - Ramírez, S. A1 - Rojo, A. A1 - Shinji, U. A1 - Waldén, J. A1 - Sega, M. A1 - Sang-Hyub, O. A1 - Macé, T. A1 - Couret, C. A1 - Qiao, H. A1 - Smeulders, D. A1 - Guenther, F.R. A1 - Thorn, W.J. III A1 - Tshilongo, J. A1 - Ntsasa, N.G. A1 - Stovcík, V. A1 - Valková, M. A1 - Konopelko, L. A1 - Gromova, E. A1 - Nieuwenkamp, G. A1 - Wessel, R. M. A1 - Milton, M. A1 - Harling, A. A1 - Vargha, G. A1 - Tuma, Dirk A1 - Kohl, Anka A1 - Schulz, Gert T1 - Final report on international comparison CCQM-K74: Nitrogen dioxide, 10 µmol/mol N2 - There is a high international priority attached to activities which reduce NOx in the atmosphere. The current level of permitted emissions is typically between 50 µmol/mol and 100 µmol/mol, but lower values are expected in the future. Currently, ambient air quality monitoring regulations also require the measurement of NOx mole fractions as low as 0.2 µmol/mol. The production of accurate standards at these levels of mole fractions requires either dilution of a stable higher concentration gas standard or production by a dynamic technique, for example one based on permeation tubes. The CCQM-K74 key comparison was designed to evaluate the level of comparability of National Metrology Institutes' measurement capabilities and standards for nitrogen dioxide (NO2) at a nominal mole fraction of 10 µmol/mol. The measurements of this key comparison took place from June 2009 to May 2010. Seventeen laboratories took part in this comparison coordinated by the BIPM and VSL. The key comparison reference value was based on BIPM measurement results, and the standard measurement uncertainty of the reference value was 0.042 µmol/mol. This key comparison demonstrated that the results of the majority of the participants agreed within limits of ±3% relative to the reference value. The results of only one laboratory lay significantly outside these limits. Likewise this comparison made clear that a full interpretation of the results of the comparison needed to take into account the presence of nitric acid (in the range 100 nmol/mol to 350 nmol/mol) in the cylinders circulated as part of the comparison, as well as the possible presence of nitric acid in the primary standards used by participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - NO2 KW - Spurenverunreinigungen KW - Meßverfahren PY - 2012 U6 - https://doi.org/10.1088/0026-1394/49/1A/08005 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08005 SP - 1 EP - 117 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kato, K. A1 - Watanabe, T. A1 - Heine, Hans-Joachim A1 - Boissière, Claudia A1 - Schulz, Gert A1 - Woo, J.-C. A1 - Kim, J.S. A1 - Sang-Hyub, O. A1 - Bae, H. K. A1 - Kim, Y.D. A1 - Qiao, H. A1 - Guenther, F.R. A1 - Roderick, G. C. A1 - Miller, W. A1 - Smeulders, D. A1 - Botha, A. A1 - van Rensburg, M.J. A1 - Tshilongo, J. A1 - Leshabane, N. A1 - Ntsasa, N. A1 - Milton, M. A1 - Vargha, G. A1 - Harling, A. A1 - Konopelko, L. A1 - Kustikov, Y.A. A1 - Vasserman, I.I. A1 - Zavyalov, S. V. A1 - Popova, T.A. A1 - Pankratov, V.V. A1 - Pir, M.N. A1 - Maltsev, M.A. A1 - Oudwater, R. A1 - Persijn, S. A1 - van Wijk, J. A1 - Wessel, R. M. T1 - International comparison CCQM-K66: Impurity analysis of methane N2 - This key comparison was performed to demonstrate the capability of NMIs to analyse the purity of methane for use as a source gas in the preparation of standard gas mixtures. This capability is an essential requirement for the preparation of accurate standards of natural gas and some other fuels. Since it is difficult to carry out a comparison with individual samples of pure gas, the sample for this comparison was a synthetic mixture of high purity methane with selected added impurities of nitrogen, argon, carbon dioxide and ethane. These mixtures were prepared by a gas company as a batch of 10 cylinders and their homogeneity and stability were evaluated by NMIJ. The KCRVs for the four different analytes in this key comparison are based on a consensus of values reported by participants. The uncertainties in the degrees of equivalence were calculated by combining the reported uncertainties with the homogeneity of the samples and the uncertainty of the KCRV. The results submitted are generally consistent with the KCRV within the estimated uncertainties. Finally, this comparison demonstrates that the analysis of nitrogen, argon, carbon dioxide and ethane in methane at amount fractions of 1 µmol/mol to 5 µmol/mol is generally possible with an uncertainty of 5% to 10%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - Methan KW - Spurenverunreinigungen KW - Gaschromatographie PY - 2012 U6 - https://doi.org/10.1088/0026-1394/49/1A/08001 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08001 SP - 1 EP - 76 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -