TY - CONF A1 - Schroepfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Optimization of welding loads using modified spray arc process N2 - Current efforts for lightweight design result in a growing application of high-strength fine-grained structural steel in modern steel constructions, e.g. mobile cranes, with yield strength from 960 MPa. The design of welded structures and the welding process become more challenging with increasing material strength due to higher elastic ratios. The formation of high residual stresses, which are able to diminish lifetime, load capacity and component safety, has to be avoided. Recent numerical and experimental analyses have shown a strong influence of the heat control and the rigidity of the weld on the welding stresses. Global reaction stresses due to an external shrinkage restraint superimpose with local residual stresses in the weld seam. Modern inverter technologies allowed the development of numerous modified spray arc processes driven by the power source manufactures with almost equal characteristics. They provide several well-known technical and economic benefits, like the possibility of welding narrower seam configurations. As a result a smaller weld volume, total heat input and, therefore, reduced welding stresses are achievable. This research focuses on the welding loads due to modified weld seams. The global reaction forces in welded components due to an external shrinkage restraint were investigated in a special in-house developed testing facility. Additionally, the superposition of the local residual stresses, global stresses and bending moments were analysed with the help of X-ray diffraction. The intensity of the restraint, the weld seam configuration and the weld process (transitional arc and modified spray arc) were varied for a statistical evaluation of the resulting welding loads. It was observed that under restraint a smaller weld seam volume affects reduced reaction stresses. T2 - IIW Annual Assembly 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Process parameters KW - Residual stresses KW - MAG Welding KW - Restraint KW - High-strength steels PY - 2016 AN - OPUS4-38787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Kromm, Arne A1 - Schaupp, Thomas A1 - Kannengießer, Thomas T1 - Welding Stress Control in High-strength Steel Components Using Adapted Heat Control Concepts N2 - High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analysed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behaviour, welding and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples. T2 - 71st IIW Annual Assembly and International Conference: Commission II-A CY - Nusa Dua, Bali, Indonesia DA - 15.07.2018 KW - Residual stresses KW - GMA Welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2018 AN - OPUS4-45623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -