TY - CONF A1 - Schroepfer, Dirk A1 - Stützer, J. A1 - Zinke, M. A1 - Jüttner, S. T1 - Studies on the pore formation in super duplex stainless steel welds N2 - When welding super duplex stainless steels a non-admissible pore formation can occur even if recommended processing guidelines are followed strictly. To investigate this phenomenon and to determine the influencing factors different claddings were produced using gas metal arc welding and submerged arc welding. The welding consumables, the shielding gas and the welding flux were varied. As shielding gases several mixtures, based on argon and 30 % helium, with various amounts of nitrogen, nitric oxide, carbondioxid and oxygen were applied. As welding flux agglomerated fluoride basic fluxes and aluminate fluoride basic fluxes were used. Different batches of the similar solid filler wire G 25 9 4 N L were used to produce the claddings on the base material UNS32750. To determine the pore formation X-ray examinations and microsections were used, to analyze the chemical composition of the claddings melt extractions and spectrometric examinations were applied. Additionally, the microhardness and the ferrite number were detected. The studies have shown the shielding gas, the welding flux and the filler metal possess a great influence on the pore formation. Even small variations in the chemical composition of the welding consumables lead to totally different results. In addition, the ferrite number and the chemical composition of the claddings depend strongly on the used gases and filler metals. T2 - IIW Intermediate Meeting, C-IIA CY - Madrid, Spain DA - 29.02.2016 KW - Cladding KW - Welding KW - Duplex stainless steels KW - Pore formation PY - 2016 AN - OPUS4-38786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Optimization of welding loads using modified spray arc process N2 - Current efforts for lightweight design result in a growing application of high-strength fine-grained structural steel in modern steel constructions, e.g. mobile cranes, with yield strength from 960 MPa. The design of welded structures and the welding process become more challenging with increasing material strength due to higher elastic ratios. The formation of high residual stresses, which are able to diminish lifetime, load capacity and component safety, has to be avoided. Recent numerical and experimental analyses have shown a strong influence of the heat control and the rigidity of the weld on the welding stresses. Global reaction stresses due to an external shrinkage restraint superimpose with local residual stresses in the weld seam. Modern inverter technologies allowed the development of numerous modified spray arc processes driven by the power source manufactures with almost equal characteristics. They provide several well-known technical and economic benefits, like the possibility of welding narrower seam configurations. As a result a smaller weld volume, total heat input and, therefore, reduced welding stresses are achievable. This research focuses on the welding loads due to modified weld seams. The global reaction forces in welded components due to an external shrinkage restraint were investigated in a special in-house developed testing facility. Additionally, the superposition of the local residual stresses, global stresses and bending moments were analysed with the help of X-ray diffraction. The intensity of the restraint, the weld seam configuration and the weld process (transitional arc and modified spray arc) were varied for a statistical evaluation of the resulting welding loads. It was observed that under restraint a smaller weld seam volume affects reduced reaction stresses. T2 - IIW Annual Assembly 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Process parameters KW - Residual stresses KW - MAG Welding KW - Restraint KW - High-strength steels PY - 2016 AN - OPUS4-38787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -