TY - JOUR A1 - Mair, Georg A1 - Hoffmann, Martin A1 - Scherer, Florian A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Slow burst testing of samples as a method for quantification of composite cylinder degradation N2 - The current practise to focus periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical. The test itself always causes a certain amount of micro damage to the cylinders but does not necessarily deliver sufficient and evaluable information. Thus BAM Federal Institute of Materials Research and Testing (Germany) moves the focal point to a new approach for validation of composite cylinders, based on destructive sample tests parallel to operation. Statistical assessment of results of these destructive tests is employed for the estimation of remaining safe service life, based on reliability demands. The estimated service life is also used for the determination of re-test periods of the examined population of composite cylinders. An essential aspect of this approach is the validation of current residual strength and its prediction at any point of service life. In cases of gas cylinders with very high cycle strength, residual strength cannot be quantified statistically by means of hydraulic load cycles. As a replacement, creep tests or burst tests may be employed. BAM suggests the 'slow burst test SBT' as a combination of these two test procedures. This is a compromise between the practicability of the (conventional) burst test and the practical relevance of sustained loads during service, to be tested in creep rupture tests. In this paper, a variety of 99 burst results of a cylinder design type used for breathing apparatus (CFRP with PE-liner) is evaluated. The influence of test procedure parameters and nature and intensity of artificial ageing on the test sample strength are analysed statistically. This leads to an evaluation of different procedures of artificial ageing and the recommendation to substitute conventional burst tests by slow burst tests for the assessment of composite pressure receptacles. KW - Slow burst test KW - Sample testing KW - Residual strength KW - Scatter KW - Mean value KW - Degradation KW - Pressure rate PY - 2014 DO - https://doi.org/10.1016/j.ijhydene.2014.04.016 SN - 0360-3199 VL - 39 IS - 35 SP - 20522 EP - 20530 PB - Elsevier CY - Oxford AN - OPUS4-30732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schukar, Marcus A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fiber based distributed strain sensing N2 - We present the results of distributed fiber optic strain sensing for condition monitoring of a hybrid type IV composite fully wrapped pressure vessel using multilayer integrated optical fibers. Distributed strain sensing was performed for a total number of 252,000 load cycles until burst of the vessel. During this ageing test material fatigue could be monitored and spatially localized. Critical material changes were detected 17,000 cycles before material failure. Results have been validated by acoustic emission analysis. T2 - 12th International Conference on Composite Science and Technology (ICCST12) CY - Sorrento, Italy DA - 08.05.2019 KW - Hybrid composite pressure vessel KW - Distributed fiber optic sensing KW - Acoustic emission analysis KW - Structural health monitoring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516772 DO - https://doi.org/10.1016/j.matpr.2020.02.872 SN - 2214-7853 VL - 34 SP - 217 EP - 223 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisermann, René A1 - Basedau, Frank A1 - Kadoke, Daniel A1 - Gründer, Peter A1 - Schoppa, André A1 - Lehr, Christian A1 - Szczepaniak, Mariusz A1 - John, Sebastian A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Mair, Georg T1 - Distributed strain sensing with sub-centimetre resolution for the characterisation of structural inhomogeneities and material degradation of industrial high-pressure composite cylinders N2 - Fibre-reinforced plastics (FRP) especially carbon-fibre-reinforced polymer (CFRP) and glass-fibre-reinforced polymer (GFRP) are commonly used materials in high pressure vessels and storage units for automotive and aerospace purposes. Optical fibres are suitable to be integrated or directly applied to the surface of FRP components. Using optical fibres it is possible to monitor the distributed strain profiles and changes within the fatigue life of a pressure vessel to ensure the operational safety. Within artificial ageing experiments we used swept wavelength interferometry (SWI) based distributed strain sensing for the monitoring of commercial high-pressure composite cylinder. This artificial ageing was performed using test conditions of 503bar pressure load (service pressure 300 bar) and 89 °C for 100 h. The polyimide coated optical fibres were glued to the surface externally in circumferential and axial direction. Using distributed strain sensing (DSS) material expansion of over 0.5% were monitored with sub-centimetre spatial resolution. Within the circumferential direction we observed up to 10 % local fluctuation compared to the median strain caused by inhomogeneous material expansion, which could cause local material fatigue. In addition, we determined material degradation manifested itself as localized remaining material expansion and/or contraction. Results have been validated by other non-destructive methods like digital strip projection. T2 - 9th European Workshop on Structural Health Monitoring (EWSHM) CY - Manchester, UK DA - 10.07.2018 KW - Distributed fibre optic sensors KW - Optical backscatter reflectometry KW - Swept wavelength interferometry (SWI) KW - Structural health monitoring (SHM) KW - Composite structures KW - Optical fibre PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458926 SP - 1 EP - 8 AN - OPUS4-45892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mair, Georg A1 - Becker, Ben A1 - Duffner, Eric A1 - Saul, Herbert A1 - Schoppa, André T1 - Composite gas cylinders - Probabilistic analysis of minimum load cycle requirements N2 - Gas cylinders made of composite materials receive growing popularity in light-weight applications. Current standards are mostly based on safety determination relying on minimum amounts of endured load cycles and a minimum burst pressure of a small number of specimens. This paper investigates the possibilities of a probabilistic strength assessment for safety improvements as well as cost and weight savings. The probabilistic assessment is based on destructive testing of small sized samples. The influence of sample size on uncertainty of the assessment is analysed. Furthermore, methods for the assessment of in-service ageing (degradation) are discussed and displayed in performance charts. KW - Cycle strength KW - Degradation KW - End of life KW - Lucky punch area KW - Slow burst test KW - Statistical assessment PY - 2016 DO - https://doi.org/10.1016/j.ijhydene.2016.06.067 SN - 0360-3199 SN - 1879-3487 VL - 42 IS - 11 SP - 7474 EP - 7484 PB - Elsevier Ltd. AN - OPUS4-38949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Mair, Georg A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Monitoring of residual stresses in composite pressure vessels via modal analysis N2 - Within a current research project at the Federal Institute for Materials Testing and Research (BAM), the degradation process of composite pressure vessels is studied to be able to give more accurate lifetime predictions in future. The presented research is based on type III pressure vessels consisting of an aluminium tank which is fully wrapped with carbon fibre reinforced plastics. Focus is set on the analysis of residual stresses which are induced into the pressure vessel during manufacturing process in order to increase high cycle fatigue. However, with increasing lifetime residual stress conditions do change. To be able to measure and monitor stress conditions, the application of a non-destructive measurement method is aspired. In this paper, potential of an experimental modal analysis is worked out to capture and monitor aging and degradation effects in pressure vessels. With the presented method, information about changes in residual stress can be obtained via an analysis of the modal parameters. To realize an application, first, a finite element simulation is used to prove and evaluate potential capability and validity. In the following, a test bench is set up and successively optimized in its accuracy and efficiency. Sensitivity of the applied measurement technique is experimentally ascertained trough the measurement of several prestress modified pressure vessels. Finally, experimental results are interpreted and evaluated with the help of numerically gained findings. T2 - NOVEM 2018 CY - St. Eulalia, Ibiza, Spain DA - 07.05.2018 KW - Composite pressure vessel KW - Residual stress KW - Modal analysis PY - 2018 VL - 6 SP - Paper 175090, 1 EP - 9 AN - OPUS4-45220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of consequences of LPG vehicle tank failure under fire conditions N2 - In case of a vehicle fire, an installed LPG (liquefied petroleum gas) tank with a malfunctioning safety device poses severe hazards. To investigate the consequences in case of tank failure, we conducted 16 tests with toroidal shaped LPG vehicle tanks. Three tanks were used for a Hydraulic Burst Test under standard conditions. Another three tanks were equipped with a statutory safety device and were subjected to a gasoline pool fire. The safety device prevented tank failure, as intended. To generate a statistically valid dataset on tank failure, ten tanks without safety devices were exposed to a gasoline pool fire. Five tanks were filled to a level of 20 %; the re-maining five were filled to a level of 100 %. In order to gain information on the heating process, three tem-perature readings at the tank surface, and three nearby flame temperatures were recorded. At distances of l = (7; 9; 11) m to the tank, the overpressure of the shock wave induced by the tank failure and the unsteady tem-peratures were measured. All ten tanks failed within a time of t < 5 min in a BLEVE (boiling liquid expanding vapor explosion). Seven of these resulted directly in a catastrophic failure. The other three resulted in partial failure followed by catastrophic failure. A near field overpressure at a distance of l = 7 m of up to p = 0.27 bar was measured. All ten tests showed massive fragmentation of the tank mantle. In total, 50 fragments were found. These 50 fragments make-up 88.6 % of the original tank mass. Each fragment was georeferenced and weighed. Fragment throwing distances of l > 250 m occurred. For the tanks with a fill level of 20 %, the average number of fragments was twice as high as it was for the tanks that were filled completely. KW - Blast wave KW - BLEVE KW - Consequences KW - Explosion KW - LPG PY - 2018 UR - https://authors.elsevier.com/a/1XnFv_Ld32ewKu DO - https://doi.org/10.1016/j.jlp.2018.09.006 SN - 0950-4230 VL - 56 SP - 278 EP - 288 PB - Elsevier CY - Kidlington - Oxford AN - OPUS4-46238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the Container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal Position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). AM tests were documented hy video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. T2 - 12th International Symposium on Fire Safety Science CY - Lund, Sweden DA - 12.06.2017 KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 DO - https://doi.org/X0.1016/j.firesaf.2017.05.006 SN - 0379-7112 VL - 91 SP - 989 EP - 996 PB - Elsevier Ltd. AN - OPUS4-43028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Sczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). All tests were documented by video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S037971121730098X DO - https://doi.org/10.1016/j.firesaf.2017.05.006 SN - 0379-7112 SN - 1873-7226 VL - 91 SP - 989 EP - 996 PB - Elsevier AN - OPUS4-40550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Kohlhoff, Harald A1 - Mair, Georg A1 - Rudolph, Michael A1 - Schoppa, Andre A1 - Storm, Sven-Uwe A1 - Szcepaniak, Mariusz T1 - Consequences of the failure of mobile gas vessels N2 - Small, mobile propane gas vessels are widely spread and comprise additional hazards in case of a surrounding, intensive fire. The aim of the presented work is to holistically investigate the potential consequences of failure of these off-the-shelf propane gas vessels in case of an absence or malfunction of safety devices. In order to generate a statistically valid dataset, a total of 15 identical propane gas bottles without pressure relief device, each containing m = 11 kg of liquid propane, were underfired in horizontal position. For each selected fire type (wood fire, petrol pool fire, propane gas fire), five vessels were tested under identical conditions. Next to extensive camera equipment including a high-speed camera, systems to record the internal pressure of the gas cylinder, the resulting shock wave overpressure (three positions) and the flame and vessel temperature (three + three positions) during the underfiring were used. Also the unsteady, highly dynamical thermal radiation caused by the explosion of the expanding gas cloud was logged. The fragments were georeferenced and weighed after each test. The experiments prove the failure of all the gas cylinders at a burst pressure of pb = [71 … 98 bar] with a fragmentation into up to seven parts (average: four objects) and a subsequent explosion of the expanding vapour after mixing with the surrounding air. The overpressure measured in the close-up range (distance to the cylinder d = 5 m) resulting from the shockwave caused by the cylinder burst was up to pmax = 0.27 bar, which can potentially lead to significant injuries to humans and damage to building structures and infrastructure, especially in connection with the explosion and the resultant thermal radiation. The distance covered by the fragments after the failure was up to r = 260 m; 47% of the fragments hit the ground more than r = 50 m away from the position of failure. T2 - Hazards 27 CY - Birmingham, UK DA - 10.05.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Fragmentation PY - 2017 SN - 978-1-911446-57-6 SP - 1 EP - 12 PB - Instiution of Chemical Engineers CY - Rugby, UK AN - OPUS4-41160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Rudolph, Michael A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Schalau, Bernd A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz A1 - Mair, Georg T1 - Infrared radiation measurement at failure of mobile gas vessels N2 - 15 identical off-the-shelf propane cylinders (m = 11 kg liquid propane) were underfired. The infrared Radiation of the Explosion, that occurred in the aftermath of the vessel failure, was recorded using four bolometers. These measurements are compared with an estimation of the Maximum intensity gained by an Analysis of the Video data, an Extended Version of the Stefan-Boltzmann law and a BLEVE model. T2 - 26th International Colloquium on the Dynamics of Explosions and Reactive Systems CY - Boston, USA DA - 30.07.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Infrared radiation PY - 2017 SP - 1 EP - 6 PB - FM Global CY - Seattle, USA AN - OPUS4-41993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Miachael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz ED - Aga, Diana ED - Daugulis, Andrew ED - Li Puma, Gianluca ED - Lyberatos, Gerasimos ED - Tay, Joo Hwa ED - Lima, Éder Claudio T1 - Hazards from failure of CNG automotive cylinders in fire N2 - Compressed natural gas (CNG) is a widely used automotive fuel in a variety of countries. In case of a vehicle fire where the safety device also malfunctions, a failure of the CNG automotive cylinder could occur. Such a cylinder failure is associated with severe hazards for the surrounding environment. Firstly, a comprehensive analysis is given below, summarizing various accidents involving CNG automotive cylinders and their consequences. In an extensive experimental program, 21 CNG automotive cylinders with no safety device were tested. Of the 21, burst tests were carried out on 5 Type III and 5 Type IV cylinders. Furthermore, fire tests with 8 Type III and 3 Type IV cylinders were conducted. Apart from cylinder pressure, inner temperature and cylinder mantle temperature, the periphery consequences, such as nearfield blast pressure and fragmentation are documented. The maximum measured overpressure due to a Type III cylinder failure was p = 0.41 bar. Each traceable fragment was georeferenced. All-in-all, fragment throw distances of d > 300 m could be observed. As one key result, it can be stated that the tested Type IV CNG cylinders showed less critical failure behavior then the Type III cylinders under fire impingement. KW - CNG KW - Composite cylinder KW - Gas cylinder KW - Tank failure KW - Fragments PY - 2019 DO - https://doi.org/10.1016/j.jhazmat.2018.12.026 SN - 0304-3894 SN - 1873-3336 VL - 367 SP - 1 EP - 7 PB - Elsevier CY - New York City, New York, USA AN - OPUS4-47135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of failure of LPG gas tanks in passenger cars during full fire development N2 - In continuation of a preceding test series involving sole LPG vehicle tanks, three passenger cars equipped with identical toroidal steel LPG tanks were set on fire. The tanks were installed in the space normally reserved for the spare tyre, in the car boot. No safety device was installed on the tank, in order to force critical failure of the cylinder. Two of the cars were equipped with a tank filled with liquefied propane to a level of 20 % (5.3 kg), the third one was filled completely (25.5 kg). The partially filled tanks failed critically within a time period of more than 20 min after the initiation of the fire. The fully-filled tank did not rupture; the propane was released continuously through a small leak that appeared during the fire. Comprehensive equipment was used to procure measurement data, enabling an analysis of potential consequences and hazards to humans and infrastructure within the vehicle surroundings. The inner status of the tank (pressure, temperature of the liquid phase and the steel casing), the development of the fire (temperature inside and around the vehicle) and the pressure induced in the near-field in case of tank rupture were recorded. The results were analysed in detail and compared against the data gained in tests involving sole, but identical LPG tanks. T2 - FIVE 2018 CY - Boras, Sweden DA - 03.10.2018 KW - Behälterversagen KW - LPG KW - Alternative Antriebe KW - Fahrzeugbrand KW - Auswirkungsbetrachtung PY - 2018 SN - 978-91-88695-95-6 VL - 51 SP - 123 EP - 131 PB - RISE Safety CY - Boras AN - OPUS4-46310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Becker, Ben A1 - Duffner, Eric A1 - Gregor, Christian A1 - Saul, Herbert A1 - Schoppa, André T1 - Composite gas cylinders - probabilistic analysis of minimum load cycle requirements N2 - Composite materials show a degradation of properties depending on Service life. This creates the necessity to find tailored methods to determine strength and residual strength of composite cylinders. The determination can be done e.g. by load cycles tests. The result needs a Statistical assessment for the precise description of strength. Especially the Statistical assessment of load cycle strength properties has a high uncertainty. It is unclear if a Log-Normal distribution, a WEIBULL distribution or others, describe the scatter behaviour of residual strength properties correctly. Distribution functions aim at approximating the frequency of occurrence of residual load cycle strength for high survival rates. An assumption has to be found and confirmed to prevent overestimation of reliability. T2 - ICHS2015 - 6th International conference on hydrogen safety CY - Yokohama, Japan DA - 19.10.2015 KW - Failure rate KW - Confidence level KW - Scatter KW - StorHy KW - Sample performance chart PY - 2015 SN - 978-2-9601366-1-6 SP - 1 EP - 14 AN - OPUS4-34804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -