TY - GEN A1 - Hofmann-Böllinghaus, Anja A1 - Schneider, U. A1 - Cziesielski, E. T1 - Variation of Testing Conditions in Single Burning Item Tests T2 - 10th International Fire Science & Engineering Conference "Interflam 2004" CY - Edinburgh, Scotland, UK DA - 2004-07-05 KW - Single burning item test KW - Simulation KW - Fire combustion KW - Computational Fluid Dynamics PY - 2004 SN - 0-9541216-4-3 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. SP - 17 EP - 23 PB - Interscience Communications CY - London AN - OPUS4-3809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huismann, Sven A1 - Weise, Frank A1 - Meng, Birgit A1 - Schneider, U. T1 - Transient strain of high strength concrete at elevated temperatures and the impact of polypropylene fibers N2 - This paper presents the results of an experimental study on the transient strain of high strength concrete (HSC) under heating up to 750 °C and the impact of polypropylene (PP) fibers. Concerning this topic only few results are available in the literature and systematic investigations are missing. However, basic knowledge is necessary for the understanding of the internal damage processes in the material as well as for heated structures. The transient strain during heating can be separated in two basic components: the free thermal strain and the mechanical strain. They were experimentally determined exemplarily for one HSC. For the determination of the mechanisms of transient strain and particularly the influence of PP fibers different techniques were applied. In this context the monitoring of the microcracking was done for the first time with acoustic emission analysis in combination with ultrasonic measurements. This new approach helps fundamentally to explain the impact of PP fibers on free thermal strain and mechanical strain during heating up. Furthermore weight loss measurements were carried out to characterize the moisture transport. It was shown that the PP fibers cause an acceleration of the moisture transport in the temperature range from 200 to 250 °C which leads to drying shrinkage in opposite direction to the free thermal strain. Hence this paper is a contribution to the general understanding of the impact of PP fibers in HSC at high temperatures and emphasizes the important influence of PP fibers on the thermal and mechanical induced strain of HSC. KW - High strength concrete KW - Polypropylene fibers KW - Elevated temperatures KW - Transient strain KW - Acoustic emission KW - Ultrasound PY - 2012 U6 - https://doi.org/10.1617/s11527-011-9798-6 SN - 1359-5997 SN - 1871-6873 VL - 45 IS - 5 SP - 793 EP - 801 PB - Springer CY - Dordrecht AN - OPUS4-26029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pistol, Klaus A1 - Weise, Frank A1 - Meng, Birgit A1 - Schneider, U. ED - Koenders, E.A.B. ED - Dehn, F. T1 - The mode of action of polypropylene fibres in high performance concrete at high temperatures N2 - It has been shown in fire tests that polypropylene fibres reduce or avoid explosive spalling of high performance concrete. In the critical temperature ränge up to 300 °C the permeability of HPC increases by using polypropylene fibre. Due to this the water vapour, which is the main reason for explosive spalling, can escape. There exist different theories in the literature conceming the micro structural mechanisms, which cause an increase in the permeability. Within the framework of an internal research project at BAM an innovative methodology was developed for experimental verifying of existing theories and to get new insights into this problem The methodology used is unique and has been undertaken here for the first time. This consists of the combination of acoustic emission and ultrasonic measurement during temperature loading and the non-destructive micro structural analysis of cooled down samples with the aid of micro X-ray computed tomography. For the validation of the nondestructive test methods scanning electron microscopic images of prepared samples were undertaken. The results show that due to the thermal decomposition of the polypropylene fibres micro canals emerge. These are connected due to a simultaneous micro cack formation. T2 - 2nd International RILEM workshop on concrete spalling due to fire exposure CY - Delft, The Netherlands DA - 05.10.2011 KW - Spalling KW - Polypropylene fibres KW - High performance concrete KW - Acoustic emission KW - X-ray computed tomography KW - Scanning electron microscopy PY - 2011 SN - 978-2-35158-118-6 SP - 289 EP - 296 PB - RILEM Publications AN - OPUS4-24835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huismann, Sven A1 - Weise, Frank A1 - Meng, Birgit A1 - Schneider, U. T1 - Influence of polypropylene fibres on the thermal strain of high strength concrete at high temperatures N2 - This paper presents the results of an experimental study on the influence of polypropylene (PP) fibres on the thermal strain of high strength concrete (HSC) at temperatures up to 750°C. Concerning this topic only few results can be found in the literature and systematic investigations are missing. However, basic knowledge is necessary to understand the internal damage processes as well as for structural design. To explain the differences in the thermal strain of HSC with and without addition of PP fibres the internal damage processes were investigated with acoustic emission (AE) analysis and ultrasound (US). Furthermore the weight loss was measured continuously during heating to monitor the drying of the specimen. This novel approach by combining these different methods with strain measurements at high temperatures allows the integral description of the internal damage processes. The results reveal significant differences in the thermal strain of HSC when PP fibres are added. Between 200°C and 250°C the thermal strain of HSC with PP fibres is superimposed by shrinkage caused by accelerated drying. Above 250°C it is lower than that of plain HSC without PP fibres. It is supposed that it is caused by a more homogeneous distribution of micro cracks whereby the fibre beds acting as defects in the concrete. Hence this paper gives a contribution to the general understanding of the impact of PP fibres in HSC at high temperatures and points out the influence of the fibres on the thermal strain of HSC. KW - High performance concrete KW - High temperatures KW - Polypropylene fibres KW - Thermal strain KW - Acoustic emission KW - Ultrasound PY - 2011 U6 - https://doi.org/10.1260/2040-2317.2.3.173 SN - 2040-2317 VL - 2 IS - 3 SP - 173 EP - 179 PB - Multi-Science Publ. Co. CY - Brentwood AN - OPUS4-24817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knaust, Christian A1 - Krause, Ulrich A1 - Hofmann-Böllinghaus, Anja A1 - Schneider, U. T1 - Modeling fire scenarios in buildings with CFD N2 - In the frame of the European harmonization, new European technical standards (Eurocodes) have been developed in recent years. Classical methods, like tables and simplified analytical procedures, as well as general engineering techniques are allowed by the Eurocodes for the fire protection design. The modeling and calculation of fire scenarios with CFD (Computational Fluid Dynamics) numerical methods is one of the general engineering methods. It is nowadays still difficult to check and evaluate the CFD results for their use as technical documents for fire safety design. Analytical engineering techniques, zone models and CFD-models have been used and compared in the present work for the prediction of the fire development in a building. To solve the conservation equation for the CFD-model, the CFD-program FDS, with the mixture fraction model, and the CFD-program FLUENT, with the one step reaction model as well as with the volumetric source term model, have been used. The combustion of polyurethane is modeled in FDS by specifying the heat release rate and the stoichiometry. For the combustion in volumetric source term model, the heat release rate and the smoke release were specified with respect to the stoichiometry. The input parameter for the one step reaction model is the pyrolysis mass flow. In the one step reaction model, the transport equations for polyurethane, H₂O, N₂, O₂, CO₂, CO and C (soot) are solved and the heat of combustion is determined from the standard formation enthalpy of all the components. In volumetric source term model, the transport equation is solved for air and smoke. FDS solves the transport equation for the mixture fraction. To model the fire development, and where no literature data was available, the required material characteristics like specific heat capacity, absorption coefficient and heat of combustion were measured. In all the investigated CFD-models the heat- and species transport equation has been solved and the absorption coefficient of soot has been considered. Furthermore, the fire development has also been investigated using zone models with the programs CFAST and MRFC. Results from analytical engineering techniques (plume calculations), which were design criteria in the past, have been used as plausibility checks for the present work. The calculation results from the investigations were compared to measurements in the same building performed by the National Institute for Standards and Technology (NIST). T2 - 11th International Symposium on Fire Protection CY - Leipzig, Germany DA - 08.06.2010 KW - CFD KW - Computational fluid dynamics KW - Zone model KW - Analytical technique KW - Combustion KW - Soot model KW - FLUENT KW - FDS KW - CFAST KW - MRFC KW - Measurements PY - 2010 SN - 978-3-00-03966-2 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. SP - 1 EP - 14 PB - Vereinigung zur Förderung des Deutschen Brandschutzes (vfdb) CY - Münster AN - OPUS4-23159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Huismann, Sven A1 - Korzen, Manfred A1 - Schneider, U. ED - Kodur, V. ED - Franssen, J.-M. T1 - A material model for the numerical simulation of high strength concrete columns subjected to fire loading T2 - 6th International conference "Structures in fire" CY - East Lansing, Michigan, USA DA - 2010-06-02 KW - High performance concrete KW - Columns KW - Fire KW - High temperatures KW - Numerical modelling KW - Numerical simulation PY - 2010 SN - 978-1-60595-027-3 SP - 312 EP - 319 PB - DEStech Publications, Inc. CY - Lancaster, PA, USA AN - OPUS4-21562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Huismann, Sven A1 - Weise, Frank A1 - Meng, Birgit A1 - Schneider, U. ED - Kodur, V. ED - Franssen, J.-M. T1 - Influence of polypropylene fibres on the thermal strain of high strength concrete at high temperatures T2 - 6th International conference "Structures in fire" CY - East Lansing, Michigan, USA DA - 2010-06-02 KW - High performance concrete KW - High temperatures KW - Polypropylene fibres KW - Thermal strain KW - Acoustic emission KW - Ultrasound PY - 2010 SN - 978-1-60595-027-3 SP - 719 EP - 726 PB - DEStech Publications, Inc. CY - Lancaster, PA, USA AN - OPUS4-21563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Huismann, Sven A1 - Weise, Frank A1 - Schneider, U. ED - F. Dehn, ED - E.A.B. Koenders, T1 - Influence of the preload on the mechanical properties of high strength concrete at high temperatures T2 - 1st International RILEM workshop on concrete spalling due to fire exposure CY - Leipzig, Germany DA - 2009-09-03 KW - High performance concrete KW - High temperatures KW - Fire KW - Mechanical properties PY - 2009 SN - 978-3-00-028604-9 SP - 189 EP - 200 AN - OPUS4-20256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -