TY - JOUR A1 - Baldofski, Stefanie A1 - Hoffmann, Holger A1 - Lehmann, Andreas A1 - Breitfeld, Stefan A1 - Garbe, L.-A. A1 - Schneider, Rudolf T1 - Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water JF - Journal of Environmental Management N2 - Bile acids are promising chemical markers to assess the pollution of water samples with fecal material. This study describes the optimization and validation of a direct competitive enzyme-linked immunosorbent assay for the bile acid isolithocholic acid (ILA). The quantification range of the optimized Assay was between 0.09 and 15 mg/L. The assay was applied to environmental water samples. Most studies until now were focused on bile acid fractions in the particulate phase of water samples. In order to avoid tedious sample preparation, we undertook to evaluate the dynamics and significance of ILA levels in the aqueous phase. Very low concentrations in tap and surface water samples made a pre-concentration step necessary for this matrix as well as for wastewater treatment plant (WWTP) effluent. Mean recoveries for spiked water samples were between 97% and 109% for tap water and WWTP influent samples and between 102% and 136% for WWTP effluent samples. 90th percentiles of intra-plate and inter-plate coefficients of variation were below 10% for influents and below 20% for effluents and surface water. ILA concentrations were quantified in the range of 33-72 mg/L in influent, 21-49 ng/L in effluent and 18-48 ng/L in surface water samples. During wastewater Treatment the ILA levels were reduced by more than 99%. ILA concentrations of influents determined by ELISA and LC-MS/MS were in good agreement. However, findings in LC-ELISA experiments suggest that the true ILA levels in concentrated samples are lower due to interfering effects of matrix compounds and/or cross-reactants. Yet, the ELISA will be a valuable tool for the performance check and comparison of WWTPs and the localization of fecal matter input into surface waters. KW - ELISA KW - LC-MS/MS KW - Bile acids KW - Fecal marker KW - Surface water KW - Wastewater PY - 2016 DO - https://doi.org/10.1016/j.jenvman.2016.08.023 SN - 0301-4797 VL - 182 SP - 612 EP - 619 AN - OPUS4-37668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Prinz, Carsten A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Blocki, Anna A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Ultra-sonication of ZIF-67 crystals results in ZIF-67 nano-flakes JF - ChemistrySelect N2 - Zeolitic Imidazolate Frameworks (ZIFs) are crystalline materials that comprise of metal nodes and Imidazole derivatives as linkers. ZIF-67 is often used in polymer composite materials e. g. for gas separation membranes. Post-synthesis treatment of ZIF-67 crystals with ultrasound leads to unforeseen plasticity that resulted in sintered ZIF-67 and ZIF-67 nano-flakes. Consequently, ultrasound increases the external surface area of ZIF-67 which might improve e.g. blending with polymers in composite materials. These new morphologies of ZIF-67 were characterized by transmission electron, scanning electron, and atomic force microscopy. The ultrasound treatment of ZIF-67 did not result in the formation of an amorphous framework or a meta-stable crystal structure as indicated by powder x-ray diffraction. In addition, ultra-sonicated ZIF-67 retained the high gas adsorption capacity and pore size compared to synthesized ZIF-67. The morphological changes are hard to detect with standard analytical methods that are usually utilized for MOF characterization. These findings also suggest that sonochemical treatment of ZIFs leads to structural effects beyond increasing the amount of nucleation clusters during sono-chemical synthesis, which is currently not addressed in the field. KW - ZIF PY - 2016 DO - https://doi.org/10.1002/slct.201601513 SN - 2365-6549 VL - 1 IS - 18 SP - 5905 EP - 5908 AN - OPUS4-38496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernandez, L. A1 - Esteves, V. I. A1 - Cunha, A. A1 - Schneider, Rudolf A1 - Tome, J. P. C. T1 - Photodegradation of organic pollutants in water by immobilized porphyrins and phthalocyanines JF - Journal of Porphyrins and Phthalocyanines N2 - New methods for water treatment are required as a result from an increasing awareness in the reduction of the pollution impact in the environment. In the perspective of the photo-oxidation of organic pollutants present in water, the principal incentive for the preparation of heterogeneous photocatalysts is their easy recovery from the reaction mixture, which allows their reuse in successive runs, minimizing the loss of their original photocatalytic properties. Different types of supports can be used in the immobilization of photoactive species, such as porphyrins (Pors) and phthalocyanines (Pcs). This mini-review will consider the different methodologies for the immobilization of Pors and Pcs and their photocatalytic performance in the photodegradation of organic pollutants in water, addressing also their recycling ability in successive water treatments. KW - Porphyrins KW - Phthalocyanines KW - Water treatment KW - Organic pollutants KW - Advanced oxidation processes KW - Heterogeneous photocatalysis KW - TiO2 KW - Microporous KW - Nanoparticles PY - 2016 DO - https://doi.org/10.1142/S108842461630007X VL - 2016 IS - 20 SP - 150 EP - 166 PB - World Scientific Publishing AN - OPUS4-38503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Macaev, F. A1 - Boldescu, V. A1 - Hodoroaba, Vasile-Dan A1 - Nadejde, C. A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Removal of pollutants by the new Fenton-like highly active catalysts containing an imidazolium salt and a Schiff base JF - Applied Catalysis B: Environmental N2 - Two iron-based molten salts comprising an imidazolium and Schiff base were evaluated as catalysts for removal of carbamazepine (CBZ) from water. The catalysts were fully characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), nuclear magnetic resonance spectroscopy (NMR), electrospray ionisation–mass spectrometry (ESI–MS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption–desorption isotherms (BET). Additionally, the formation of photo-sensitized oxygen was investigated by spin-trapping using electron spin resonance (ESR). The catalytic activity in heterogeneous oxidation of the micropollutant (CBZ) was also evaluated. The effects of catalyst loading, pH, H2O2 dosage and UV light on the oxidation of the selected compound were investigated. After 15 min of UVA irradiation in the presence of 200 μM H2O2, CBZ was completely removed over both catalysts. KW - Fe-based highly active ionic liquids KW - Characterization of catalysts KW - Removal KW - Singlet oxygen KW - Carbamazepine PY - 2016 DO - https://doi.org/10.1016/j.apcatb.2015.10.032 SN - 0926-3373 VL - 183 SP - 335 EP - 342 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuhne, Maren A1 - Schneider, Rudolf T1 - Verfahren zur Charakterisierung und Selektion Hapten-spezifischer Hybridomazellen und Herstellung hochaffiner monoklonaler anti-Hapten-Antikörper N2 - Die vorliegende Erfindung liegt auf dem Gebiet der Herstellung hochaffiner anti-Hapten-Antikörper. Ferner befasst sich die vorliegende Erfindung mit einem Markierungsverfahren zur durchflußzytometrischen Charakterisierung und Selektion Hapten-spezifischer Hybridomazellen KW - Patent KW - Antikörper KW - Monoklonal KW - Durchflußzytometrie KW - Markierung KW - Label PY - 2016 VL - DE 10 2014 114 522 A1 2016.04.07 SP - 1 EP - 16 CY - München AN - OPUS4-39248 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pires, A. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina JF - Environmental Pollution N2 - In the last decade studies have reported the presence of several pharmaceutical drugs in aquatic environments worldwide and an increasing effort has been done to understand the impacts induced on wildlife. Among the most abundant drugs in the environment is caffeine, which has been reported as an effective chemical anthropogenic marker. However, as for the majority of pharmaceuticals, scarce information is available on the adverse effects of caffeine on marine benthic organisms, namely polychaetes which are the most abundant group of organisms in several aquatic ecossystems. Thus, the present study aimed to evaluate the biochemical alterations induced by environmentally relevant concentrations of caffeine on the polychaete species Diopatra neapolitana and Arenicola marina. The results obtained demonstrated that after 28 days exposure oxidative stress was induced in both species, especially noticed in A. marina, resulting from the incapacity of antioxidant and biotransformation enzymes to prevent cells from lipid peroxidation. The present study further revealed that D. neapolitana used glycogen and proteins as energy to develop defense mechanisms while in A. marina these reserves were maintained independently on the exposure concentration, reinforcing the low capacity of this species to fight against oxidative stress. KW - Invertebrates KW - Pharmaceuticals KW - Oxidative stress biomarkers KW - Energy reserves PY - 2016 DO - https://doi.org/10.1016/j.envpol.2016.04.031 VL - 2016 IS - 214 SP - 456 EP - 463 PB - Elsevier Ltd. AN - OPUS4-38505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tamschick, S. A1 - Rozenblut-Kościsty, B. A1 - Ogielska, M. A1 - Lehmann, Andreas A1 - Lymberakis, P. A1 - Hoffmann, F. A1 - Lutz, I. A1 - Schneider, Rudolf A1 - Kloas, W. A1 - Stöck, M. T1 - Impaired gonadal and somatic development corroborate vulnerability differences to the synthetic estrogen ethinylestradiol among deeply diverged anuran lineages JF - Aquatic Toxicology N2 - Amphibians are undergoing a global decline. One poorly investigated reason could be the pollution of aquatic habitats by endocrine disrupting compounds (EDCs). We tested the susceptibility to the synthetically stabilized estrogen 17α-ethinylestradiol (EE2) in three deeply diverged anuran species, differing in sex determination systems, types of gonadogenesis and larval ecologies. To understand whether data from the amphibian model Xenopus laevis (Pipidae) are analogous and applicable to only distantly related non-model amphibians, tadpoles of X. laevis, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae) were simultaneously exposed to 50, 500 and 5000 ng/L EE2 from hatching until completion of metamorphosis, using a flow-through-system under identical experimental conditions. Comparing molecularly established genetic with histologically assessed phenotypic sex in all species, we have recently shown that EE2 provoked numerous genetic-male-to-phenotypic-female sex reversals and mixed sex individuals, confirming overall its expected feminizing effect. In the present study, we focus on the influence of EE2 on gonadal and somatic development. Anatomy and histology revealed several species-specific effects. In both non-model species, H. arborea and B. viridis, high numbers of anatomically impaired gonads were observed. In H. arborea, exposed to 5000 ng/L EE2, numerous underdeveloped gonads were detected. Whereas EE2 did not alter snout-to-vent length and body weight of X. laevis metamorphs, H. arborea showed a treatment-dependent decrease, while B. viridis exhibited an increase in body weight and snout-to-vent length. Apart from a concentration-dependent occurrence of yellowish skin color in several H. arborea, no organ-specific effects were detected. Since EE2 ubiquitously occurs in many aquatic ecosystems and affects sexual and somatic development, among EDCs, it may indeed contribute to amphibian decline. The inter-species variation in developmental EE2-effects corroborates species-specific vulnerability differences towards EDCs between deeply diverged amphibian groups KW - Endocrine disruption KW - Ethinylestradiol KW - Mass spectrometry PY - 2016 DO - https://doi.org/10.1016/j.aquatox.2016.07.001 SN - 0166-445X SN - 1879-1514 VL - 177 SP - 503 EP - 514 PB - Elsevier AN - OPUS4-37633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole JF - Talanta N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - Sulfamethoxazole KW - ELISA KW - LC-MS/MS PY - 2016 DO - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz, D. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers JF - Chemosphere N2 - Caffeine is known to be one of the most consumed psychoactive drugs. For this reason, caffeine is continuously released into the environment with potential impacts on inhabiting organisms. The current study evaluated the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure for 28 days to caffeine (0.5, 3.0 and 18.0 mg/L). The results obtained showed that, with the increasing caffeine concentrations, an increase in clams defense mechanisms (such as antioxidant and biotransformation enzymes activity) was induced which was accompanied by an increase in protein content. Nevertheless, although an increase on defense mechanisms was observed, clams were not able to prevent cells from lipid peroxidation that increased with the increase of caffeine concentration. Furthermore, with the increase of exposure concentrations, clams increased their metabolic activity (measured by electron transport activity), reducing their energy reserves (glycogen content), to fight against oxidative stress. Overall, the present study demonstrated that caffeine may impact bivalves, even at environmentally relevant concentrations, inducing oxidative stress in organisms. The present study is an important contribution to address knowledge gaps regarding the impacts of long-term exposures to pharmaceuticals since most of the studies assessed the effects after acute exposures, most of them up to 96 h. KW - Bivalves KW - Oxidative stress KW - Pharmaceuticals KW - Long-term exposure KW - Environmentally relevant concentrations PY - 2016 DO - https://doi.org/10.1016/j.chemosphere.2016.06.068 VL - 2016 IS - 160 SP - 95 EP - 103 PB - Elsevier Ltd. AN - OPUS4-38508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Hybrid iron-based core-shell magnetic catalysts for fast degradation of bisphenol A in aqueous systems JF - Chemical Engineering Journal N2 - Three types of hybrid modified magnetite (Fe₃O₄) nanoparticles, functionalized with either chitosan, chitosan/iron (II) oxalate or chitosan/iron (III) citrate, were synthesized by chemical precipitation method. The obtained nanomaterials were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller analysis, scanning and Transmission electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The prepared composites were further tested as magnetic catalysts for the removal of bisphenol A (BPA) in aqueous media. The kinetic Degradation experiments were performed at laboratory scale, while the best operational parameters for all three materials were established: 1.00 g L⁻¹ of catalyst, 10 mmol L⁻¹ H₂O₂, under simulated solar light irradiation. After 15 min of UVA irradiation under the experimental conditions mentioned above, it was possible to decompose up to 99% of the micropollutant over all catalysts. Fe₃O₄/chitosan/iron oxalate catalyst showed the highest and fastest catalytic activity in BPA removal. Catalytic wet peroxide oxidation of non-biodegradable micropollutants on such iron-based hybrid nanoparticles can be a suitable pre-treatment method for wastewater decontamination, as an environment-friendly simplified Approach for water clean-up. KW - Katalysator KW - Bisphenol A KW - Nano KW - Fenton KW - Magnetische Nanopartikel PY - 2016 DO - https://doi.org/10.1016/j.cej.2016.05.090 SN - 1385-8947 VL - 302 SP - 587 EP - 594 PB - Elsevier CY - Amsterdam AN - OPUS4-37126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Freitas, R. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Velez, C. A1 - Moreira, A. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Figueira, E. A1 - Soares, A. M. V. M. T1 - The impacts of pharmaceutical drugs under ocean acidification: Newdata on single and combined long-term effects of carbamazepine on Scrobicularia plana JF - Science of the Total Environment N2 - Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clamScrobicularia plana. For this, a long-termexposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs. KW - Ocean acidification KW - Pharmaceuticals KW - Biomarkers KW - Oxidative stress KW - Clams KW - Long-term exposures PY - 2016 DO - https://doi.org/10.1016/j.scitotenv.2015.09.138 VL - 541 SP - 977 EP - 985 PB - Elsevier B.V. AN - OPUS4-38502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole JF - Talanta N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - ELISA KW - LC-MS/MS KW - Sulfamethoxazole PY - 2016 DO - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-38530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pires, A. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Hediste diversicolor as bioindicator of pharmaceutical pollution: Results from single and combined exposure to carbamazepine and caffeine JF - Comparative Biochemistry and Physiology, Part C N2 - Several environmental stressors have been identified as key and/or emerging drivers of habitat change that could significantly influence marine near-shore ecosystems. These include increasing discharges of pharmaceutical contaminants into the aquatic coastal systems. Pharmaceutical drugs are often detected in aquatic environments but still information on their toxicity impacts on inhabiting species is scarce, especially when acting in combination. Furthermore, almost no information is available on the impacts of pharmaceuticals in polychaetes, often the most abundant taxon in benthic communities and commonly used as indicator species of environmental conditions. Therefore, the present study aimed to evaluate the biochemical alterations induced in the polychaete Hediste diversicolor, from a low contaminated area at the Ria de Aveiro lagoon (Portugal), by the antiepileptic drug carbamazepine (0.0 - control, 0.3, 3.0, 6.0 and 9.0 μg/L) and the stimulant caffeine (0.0 - control, 0.5, 3.0, and 18.0 μg/L), acting alone and in combination (0.3 CBZ + 0.5 CAF and 6.0 CBZ + 3.0 CAF). Glutathione Stransferases (GSTs), superoxide dismutase (SOD) and catalase (CAT) activities was determined in Hediste diversicolor from each condition. Lipid peroxidation (LPO), glutathione reduced and oxidized (GSH and GSSG), glycogen and electron transport system (ETS) were also measured. The results obtained clearly revealed that both drugs induced oxidative stress in H. diversicolor, shown by the increase on LPO levels and decrease on total glutathione and GSH/GSSG ratio with the increase of exposure concentrations. Furthermore, the present findings demonstrated that polychaetes biotransformation capacity as well as antioxidant defense mechanisms were not sufficiently efficient to fight against the excess of reactive oxygen species (ROS) leading to LPO when organisms were exposed to both drugs. Our results also demonstrated that polychaetes tended to decrease the activity of ETSwhen exposed to drugs, avoiding energy expenditurewhich may prevent them fromgreater damages. The present study further revealed that the impacts induced by the combination of both drugswere similar to those obtained at the highest drugs concentrations acting alone. KW - Invertebrates KW - Pharmaceuticals KW - Oxidative stress biomarkers KW - Energy reserves PY - 2016 DO - https://doi.org/10.1016/j.cbpc.2016.06.003 VL - 2016 IS - 188 SP - 30 EP - 38 PB - Elsevier Inc. AN - OPUS4-38509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pieres, A. A1 - Almeida, Ângela A1 - Correia, J. A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Long-term exposure to caffeine and carbamazepine: Impacts on the regenerative capacity of the polychaete Diopatra neapolitana JF - Chemosphere N2 - The toxicity induced in non-target organisms by pharmaceutical drugs has been the focus of several studies. In the aquatic environment, most of the studies have been devoted to fish and bivalves, while little is known on the impacts induced in polychaetes. The present study evaluated the impacts of carbamazepine and caffeine on the regenerative capacity of Diopatra neapolitana, a polychaete species with high ecological and economic relevance. Under laboratory controlled conditions polychaetes were exposed, during 28 days, to carbamazepine (Ctl-0.0; 0.3; 3.0; 6.0; 9.0 mg/L) and caffeine (Ctl-0.0; 0.5; 3.0; 18.0 mg/L). During the experiment, at days 11, 18, 25, 32, 39 and 46 after amputation, for each specimen, the percentage of the body width regenerated was determined and the number of new segments was counted. The regenerative capacity was assessed considering the number of days needed to achieve full regeneration and the total number of new segments. The obtained results revealed that with the increase of drugs concentrations organisms regenerated less new segments and took longer to completely regenerate. KW - Diopatra neapolitana KW - Pollution KW - Pharmaceutical drugs KW - Regenerative capacity PY - 2016 DO - https://doi.org/10.1016/j.chemosphere.2015.12.035 SN - 0045-6535 VL - 146 SP - 565 EP - 573 PB - Elsevier AN - OPUS4-38497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oberleitner, Lidia A1 - Garbe, L.-A. A1 - Dahmen-Levison, Ursula A1 - Schneider, Rudolf T1 - Improved strategies for selection and characterization of new monoclonal anticarbamazepine antibodies during the screening process using feces and fluorescence polarization immunoassay JF - Analytical Methods N2 - Immunoassays are suitable tools for high-throughput screenings. The prerequisite for accurate determinations by these methods is the selection of an excellent antibody. The production and selection of monoclonal antibodies is usually a tedious process. In this study, new strategies for improving antibody production and characterization were applied. This includes the monitoring of the immunization progress in mice through antibodies extracted from feces, which allows a time-resolved and animal-friendly monitoring of the immune response. Additionally, fluorescence polarization immunoassay (FPIA) could be successfully applied for fast and easy examination of cell culture supernatants and the investigation of antibody/antigen interactions including kinetics and fluorescence properties. These methods simplify the selection of the optimal antibody. As a target analyte, carbamazepine was chosen. This is a widely used antiepileptic drug which also frequently occurs in the environment. The new antibody enables CBZ determination in the concentration range 0.66–110 µg L-1 within 10 min using a high-throughput microtiter plate-based FPIA, and between 1.4 and 79 µg L-1 within 5 min applying an automated cuvette-based FPIA instrument, and from 0.05–36 µg L-1 using ELISA. The measurements were performed at a non-equilibrium state which improved the sensitivity and selectivity of the assays. Due to low cross-reactivity especially towards the main CBZ metabolite and other pharmaceuticals (<1%), this antibody gives the opportunity for application in medical and environmental analyses. KW - Antikörper KW - Emerging Pollutants KW - Schadstoffe KW - Monoklonal KW - Pharmazeutika KW - Arzneistoffe KW - Assay KW - Pesticide parathion-methyl KW - Waste-water KW - Samples KW - Pharmaceuticals KW - Quantification PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392473 DO - https://doi.org/10.1039/c6ay01968d SN - 1759-9660 VL - 8 SP - 6883 EP - 6894 PB - Royal Society of Chemistry CY - London AN - OPUS4-39247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -