TY - JOUR A1 - Abdelshafi, Nahla A. A1 - Bell, Jérémy A1 - Rurack, Knut A1 - Schneider, Rudolf T1 - Microfluidic electrochemical immunosensor for the trace analysis of cocaine in water and body fluids N2 - Quick but accurate testing and on‐the‐spot monitoring of cocaine in oral fluids and urine continues to be an important toxicological issue. In terms of drug testing, a number of devices have been introduced into the market in recent decades, notably for workplace inspection or roadside testing. However, these systems do not always fulfill the requirements in terms of reliability, especially when low cut‐off levels are required. With respect to surface water, the presence of anthropogenic small organic molecules such as prescription and over‐the‐counter pharmaceuticals as well as illicit drugs like cannabinoids, heroin, or cocaine, has become a challenge for scientists to develop new analytical tools for screening and on‐site analysis because many of them serve as markers for anthropogenic input and consumer behavior. Here, a modular approach for the detection of cocaine is presented, integrating an electrochemical enzyme‐linked immunosorbent assay (ELISA) performed on antibody‐grafted magnetic beads in a hybrid microfluidic sensor utilizing flexible tubing, static chip and screen‐printed electrode (SPE) elements for incubation, recognition, and cyclic voltammetry measurements. A linear response of the sensor vs. the logarithm of cocaine concentration was obtained with a limit of detection of 0.15 ng/L. Within an overall assay time of 25 minutes, concentrations down to 1 ng/L could be reliably determined in water, oral fluids, and urine, the system possessing a dynamic working range up to 1 mg/L. KW - ELISA KW - Kokain KW - Lab-on-chip KW - Speichel KW - Urin KW - Drogenanalytik KW - Schnelltest KW - Biosensor PY - 2018 U6 - https://doi.org/10.1002/dta.2515 SN - 1942-7611 VL - 11 IS - 3 SP - 492 EP - 500 PB - Wiley-VCH CY - Hoboken, New Jersey, USA AN - OPUS4-46888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Immunoanalytical platforms for on-site environmental health and food safety testing N2 - An overview of methods developed in the division. T2 - FoodSmartphone.eu - Online Symposium CY - Online meeting DA - 25.11.2020 KW - Umweltanalytik KW - Lebensmittelanalytik KW - Immunoassay KW - Biosensor PY - 2020 AN - OPUS4-51841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scala-Benuzzi, M. L. A1 - Soler-Illia, G. J. A. A. A1 - Rabia, J. A1 - Battaglini, F. A1 - Schneider, Rudolf A1 - Pereira, S. V. A1 - Messina, G. A. T1 - Immunosensor based on porous gold and reduced graphene platform for the determination of EE2 by electrochemical impedance spectroscopy N2 - In this work, we report an electrochemical immunosensor to detect ethinylestradiol in water samples, using electrochemical impedance spectroscopy (EIS) as a detection technique. For the development of this immunosensor, the direct modification of the working electrode of a screen-printed carbon electrode was carried out. First, to reduce the resistance of the electrode, electroreduced graphene was incorporated on the surface. Second, a porous gold structure was electrodeposited on reduced graphene by electrodeposition and the dynamic hydrogen bubble template assisted method. Thus, a marked increase in surface area was obtained for anti-EE2 antibodies immobilization. Subsequently, the specific anti-EE2 antibodies were covalently immobilized using α-lipoic acid for attaching them to the gold surface. The electrode modified with the antibodies was incubated for 30 min in the samples containing EE2, producing the specific Antigen antibody binding. As the charge transfer resistance of a redox probe in the electrode surface is governed by the surface blocking effects, the charge transfer resistance was related to the amount of EE2 captured to realize a quantitative determination. For this, the EIS measurements were performed in a 4 mM [Fe(CN)6]4−/3− solution in 0.1 M KCl. The obtained Nyquist diagrams were adjusted using the Randles circuit as an equivalent circuit to obtain the corresponding resistances. The developed methodology showed good selectivity, precision, and sensitivity; although the LOD obtained was higher than those presented in other published articles, it turned out to be an alternative that allows the determination of ethinylestradiol using a simple disposable electrode. KW - Ethinylestradiol KW - Biosensor KW - Elektrochemisch KW - Impedanz PY - 2021 U6 - https://doi.org/10.1016/j.jelechem.2021.115604 SN - 1572-6657 VL - 897 SP - 115604 EP - 115611 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Advanced materials broadening the scope of antibody-based analytical methods N2 - Immunoanalytical Techniques, i.e., antibody-based analytical methods, have been used for decades in clinical diagnostics. What makes them attractive for other fields of application is their short time-to-result and high sensitivity. Microplate-based assays such as ELISA have been adopted early in environmental and food analysis. Yet, to make immunoassays even faster, more sensitive, robust, and, most desirable, portable, advanced materials, sometimes developed for other purposes, can be profitably used to achieve these goals. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or nanoparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the assays to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Specialty electrodes can enable for higher sensitivity in electrochemical detection. All this broadens the scope of application and lowers effort and cost for analysis at the point-of-need. T2 - ChemForum - Kolloquium des Instituts für Strukturchemie CY - Lisbon, Portugal DA - 07.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Anthropogenic markers quantified by rapid immunochemical methods – what can their occurrence in wastewater, surface water, and drinking water tell us? N2 - In urban waters, a multitude of organic micropollutants, often termed emerging pollutants, has been found over the last decades. Analytical methods suitable for trace analysis are needed that are desirably also fast, inexpensive and, if possible, robust and portable. Immunoanalytical, i.e., antibody-based, methods which are available in a broad range of formats, can be profitably used here to screen for the distribution and to monitor the trends of concentration levels of contaminants of emerging concern in the environment. Some of these formats are single-analyte but high-throughput methods. To use them wisely, indicator substances, sometimes called anthropogenic markers, should be selected and used in screening approaches, i.e., as indicators for contamination and the pre-selection of samples at which to have a closer look by multiplex methods like LC-MS/MS. Other methods are suitable to be performed on portable instrumentation in the field (on-site) or in facilities such as wastewater treatment plants for on-line monitoring of the treatment and elimination process. Furthermore, array technologies have been established that allow for parallel (multiplex) analysis of several analytes of interest. The microtiter-plate based ELISA (Enzyme-linked Immunosorbent Assay) is the method of choice for the analysis of a large number of samples [1]. ELISAs are available to monitor for anthropogenic markers such as the antiepileptic carbamazepine, the analgesic diclofenac, the antihistaminic cetirizine, the steroid hormone estrone, the antimicrobial sulfamethoxazole, psychoactive caffeine and cocaine, the priority pollutant bisphenol A, and the bile acid isolithocholic acid. For on-site screening and monitoring, simpler formats, like mix-and-read assays, e.g., the Fluorescence Polarization Immunoassay (FPIA) [2] or Lateral-flow Immunoassays (LFIA) [3] are more suitable tools, the latter based on dipsticks or little cassettes, with which users have become very familiar during the COVID-19 pandemic via rapid antigen tests. The suitability of multi-analyte formats such as immunomicroarrays depends on the choice of a signal-producing system that provides small uncertainties and good reproducibility of the measurements. Bead-based (“suspension”) arrays, read out in flow cytometers, are a powerful platform for multiplex assays [4]. Electrochemical formats, run on portable devices, provide additional advantages as no light source is required. They are most promising for stand-alone analysers and biosensors [5]. The speed, low cost and on-site capabilities of these methods allow to gather a lot more data on anthropogenic compounds which enables to quantify inputs, differences in degradation power of elimination processes, dilution phenomena and a more precise image of individual water cycles which is demonstrated by several examples. T2 - EuChemS Chemistry Congress ECC8 CY - Lisbon, Portugal DA - 28.08.2022 KW - Biosensor KW - Immunoassay KW - Antibody PY - 2022 AN - OPUS4-56783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Environmental Analysis at BAM N2 - The talk is to introduce BAM, the Department of Analytical Chemistry; Reference Materials and the Division of Environmental Analysis and its works to the audience. T2 - Seminar des Centre for Environmental and Marine Studies (CESAM) der Universität Aveiro CY - Aveiro, Portugal DA - 12.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Field Analysis by Antibody-based Analytical Methods: The Importance of Advanced Materials N2 - Analytical methods based on the selectivity of antibodies, often called immunoassays, are a back-bone of clinical laboratory diagnostics. To bring them to the field, i.e., to make immunoanalytical methods portable, hopefully even faster, more sensitive, and robust, advanced materials are re-quired. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or na-noparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the as-says to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Spe-cialty electrodes can enable for higher sensitivity in electrochemical detection. Without research into better materials, efforts to bring analysis to the point-of-need will not bear fruit. T2 - Kolloquium des Aveiro Institut of Materials (CICECO) der Universität Aveiro CY - Aveiro, Portugal DA - 20.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf A1 - Ecke, Alexander A1 - Bell, Jérémy T1 - Electrochemical immunosensing with a 3-dimensional microfluidic flow cell N2 - Immunoassays, based on analyte recognition and capture by highly selective antibodies with high affinity, are intensively used in all fields of laboratory diagnostics and in screen-ings of food and environmental samples. Yet, for many purposes, online sensors are desir-able, and, in principle, all immunoassay tech-niques can be integrated into lab-on-chip set-ups that can work as continuous monitoring devices. Yet, the challenge remains to devel-op platforms and elements that are fit for a quick transition of laboratory microplate as-says to immunosensors. T2 - European Biosensor Symposium CY - Aachen, Germany DA - 28.08.2023 KW - Biosensor KW - Antibodies KW - Microfluidics KW - Electrochemical detection PY - 2023 AN - OPUS4-59240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf A1 - Riedel, Soraya A1 - Bayram, Rabia A1 - Döring, Sarah A1 - Konthur, Zoltán T1 - Expression of Aspergillus niger Fumonisin Amine Oxidase (AnFAO) for an Electrochemical Detection of the Mycotoxin N2 - The poster describes how molecular biology, especially recombinant expression of proteins, in this case, an enzyme, can underpin developments of biosensors. The fumonisin oxidase produced by the fungus Aspergillus niger (AnFAO) is highly selective for the toxic mycotoxin fumonisin. Its structure and sequence has been published before. We took this information and expressed the enzyme in E. coli. The enzyme proved active and could be employed in an amperometric biosensor for the detection of the mycotoxin. T2 - 30. Leibniz Conference of Advanced Science CY - Berlin, Germany DA - 06.10.2023 KW - Biosensor KW - Enyzme KW - Recombinant KW - Electrochemical detection PY - 2023 AN - OPUS4-59241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -