TY - JOUR A1 - Szczerba, Wojciech A1 - Schneider, M. A1 - Żukrowski, J. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Riesemeier, Heinrich A1 - Sikora, M. A1 - Mandel, K. T1 - Spectroscopic Study of the Role of Metal Ions in the Adsorption Process of Phosphate in Nanoscaled Adsorbers Based on Metal (Zn/ Fe/Zr) Oxyhydroxides JF - The Journal of Physical Chemistry C N2 - Currently great effort is made to find materials and technologies for the recycling of phosphate from wastewater. Herein, we present an in-depth study of the Phosphate adsorption mechanism of a promising adsorber material, a Zn−Fe−Zr oxyhydroxide-based nanostructured precipitate. The behavior of the multicomponent nanomaterial, consisting of both crystalline and amorphous parts, is investigated via X-ray absorption fine structure spectroscopy and Mössbauer spectroscopy, revealing the importance of the nanostructured composition for the phosphate adsorption. We found evidence that adsorption takes place especially in the vicinity of iron sites in the amorphous part of the material. KW - Zn-Fe-Zr nanoparticles KW - Adsorption of phosphate KW - XAFS KW - Catalysis PY - 2017 DO - https://doi.org/10.1021/acs.jpcc.7b04773 SN - 1932-7447 VL - 121 IS - 45 SP - 25033 EP - 25042 PB - ACS Publications AN - OPUS4-43348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guehrs, E. A1 - Schneider, M. A1 - Günther, Ch. M. A1 - Hessing, P. A1 - Heitz, K. A1 - Wittke, D. A1 - López-Serrano Oliver, Ana A1 - Jakubowski, Norbert A1 - Plendl, J. A1 - Eisebitt, S. A1 - Haase, A. T1 - Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view JF - Journal of Nanobiotechnology N2 - Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. KW - Nanoparticles KW - FIB/SEM slice and view KW - Absolute dose KW - Cellular internalization KW - Macrophage PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-400626 DO - https://doi.org/10.1186/s12951-017-0255-8 SN - 1477-3155 VL - 15 SP - Article 21, 1 EP - 11 AN - OPUS4-40062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, M. A1 - Drenkova-Tuhtan, A. A1 - Szczerba, Wojciech A1 - Gellermann, C. A1 - Meyer, C. A1 - Steinmetz, H. A1 - Mandel, K. A1 - Sextl, G. T1 - Nanostructured ZnFeZr oxyhydroxide precipitate as efficient phosphate adsorber in waste water: understanding the role of different material-building-blocks JF - Environmental Science Nano N2 - In the recent years great effort has been made to find materials and technologies for removing and recycling phosphate from waste water. We herein present the detailed study on a nanostructured multicomponent material, which turned out to be a very efficient phosphate adsorber. The role of each constituent is carefully examined to understand the collaborative interaction of the components of the nanostructured adsorber. We found evidence that it is particularly the nanostructure of this material, which has a crucial influence on the phosphate Adsorption performance, indicating a synergetic effect of the different components. Moreover, the adsorption mechanism was studied dependent on the concentration of phosphate, changing from a Freundlich/Langmuir-like behaviour to a BET-like multilayer adsorption of phosphate on the material. Our work demonstrates that there is high potential for discovering new adsorber materials for environmental applications through careful engineering of the chemical composition in close connection with the materials (nano) structure. KW - Adsober KW - Phosphate adsorption KW - Waste water treatment PY - 2017 DO - https://doi.org/10.1039/c6en00507a SN - 2051-8153 SN - 2051-8161 VL - 4 IS - 1 SP - 180 EP - 190 PB - RSC AN - OPUS4-39700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -