TY - JOUR A1 - Schneider, André A1 - Gumenyuk, Andrey A1 - Lammers, Marco A1 - Malletschek, A. A1 - Rethmeier, Michael T1 - Laser beam welding of thick titanium sheets in the field of marine technology N2 - The ever larger requirements of the material selection in the range of maritime industry necessitate the application of high-tech materials. Titanium because of its excellent mechanical properties at low weight is an attractive alternative for the construction of ships. The goal of this investigation was to design a welding method for joining samples of 16 mm thick Ti3Al2.5 V. The welding experiments with a 20 kW Yb-fiber laser source and varying combinations of parameters were intended to qualify the laser beam welding process. The welding results were analyzed by non-destructive and destructive testing. In addition, the welding tests were recorded with two high-speed cameras to observe the weld pool and the vapor plume. The evaluation of the high-speed images in correlation with the results of non-destructive testing shows, that a significant improvement of process stability and weld quality can be achieved by the suppression of the vapor plume. KW - Titanium alloy KW - Maritime industry KW - Vapor plume KW - Laser beam welding KW - Ti3Al2.5V PY - 2014 U6 - https://doi.org/10.1016/j.phpro.2014.08.046 SN - 1875-3892 VL - 56 SP - 582 EP - 590 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-31439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, André A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Mobile vacuum in pocket format, mobile local low-pressure cap for high power laser beam welding of thick materials N2 - The presented apparatus enables laser beam welding of thick materials under local reduced pressure conditions, thus improving the quality of welds and reducing the laser beam power necessary for complete penetration welding. The vacuum cap presented in this article uses a local reduced ambient pressure environment in a tight zone around the welding area and, in contrast to a conventional vacuum chamber, it is movable in the welding direction. The mobile installation is very compact and reaches pressure values of around 200 mbar. The reduced pressure in the vacuum cap is sufficient to generate 50 % higher penetration depth in comparison to welding under ambient pressure conditions. The low pressure around the keyhole reduces the vapour-plasma plume and therefore prevents a defocusing and scattering of the laser radiation. This allows to raise the amount of laser beam power entering the keyhole as well as the effective power density. KW - High power laser beam welding KW - Mobile vacuum KW - Local reduced pressure KW - Vapor plume KW - Keyhole PY - 2015 U6 - https://doi.org/10.1002/latj.201500025 SN - 1613-7728 SN - 1863-9119 VL - 12 IS - 4 SP - 43 EP - 44 PB - Wiley-VCH CY - Weinheim AN - OPUS4-34583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -