TY - CONF A1 - Schmidt, Wolfram T1 - Promising bio-based material solutions for more sustainable concrete N2 - Today, concrete engineers can vary consistencies between very stiff and self-compacting. At the same time engineers can opt for a vast variety of binders. The possibility to use optimised mineral binders and to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology and the interactions particles can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying additions, SCMs and admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere the effective use of SCMs, additions and chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in many countries with challenging climatic conditions, it is difficult to use them, due to lacking local supply and supply infrastructure, and often the awareness of the value of local mineral resources is missing. However, the long distance transportation of mineral resources and chemicals is not very environmentally friendly and the economic consequences are dramatic. However, bio-based constituents and chemicals have been used in construction for ages effectively. Due to the enormous relevance of binders, fillers and rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of products that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in many countries in the world. However, alternatives are available, which can be found locally. In addition many agricultural wastes today are dumped, although they could be converted to reactive ashes easily. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for binders, fillers and rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - Peak Forum on Sustainable Civil Engineering Materials CY - Shanghai, China DA - 18.05.2017 KW - Cement KW - Concrete KW - Sustainability KW - Bio-based materials KW - Polysaccharides KW - Supplementary cementitious materials PY - 2017 AN - OPUS4-41031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Influence of nano scale effects on the macroscopic rheology N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Based on the observations of the nano scale effects, it seems that higher sensitivity against variations in the constituents, the handling, or the boundary condition are the inevitable price for higher performances. However, eventually a very effective method is introduced that helps to maintain stable processes regardless of the root cause for performance changes based on an efficient in-situ process control scheme and superplasticizer and stabilising agents as counter actions. T2 - International Workshop on Nano-Engineered Meta-materials for Civil Infrastructures CY - Jinan, China DA - 20.5.2017 KW - Rheology KW - Meta materials KW - Nano engineering KW - Admixtures KW - Cement KW - Ettringite PY - 2017 AN - OPUS4-41032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Priebe, Nsesheye Susan T1 - Influence of stabilising agents on limestone filler and cement pastes N2 - The paper showed that the STA behave completely different in pastes with LSF and cement, respectively, as well as with or without PCE. While STA can affect plastic viscosity and yield stress in LSF and cement pastes, the addition of PCE causes that the STA have mainly an impact on plastic viscosity, except DGUM and ST-low. The performance of STA in LSF and cementitious systems can vary greatly due to different ionic strengths of the liquid phase. The charges due to modification of the starches have an intense influence on the rheological properties in pastes. The combined use of PCE and STA can lead to a significant increase of the plastic viscosity without a strong effect to the yield stress. For the evaluation of the effectivity of STA the ionic strength of the liquid phase and the solid volume fraction of the binder have to be taken into account. Further influences can arise from grain size and aggregate content as well as the temperature, which were not discussed in this paper. T2 - 3rd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Johannesburg, South Africa DA - 26.06.2017 KW - Stabilising agent KW - Limestone filler KW - Cement PY - 2017 SN - 978-3-9818270-7-1 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 3 SP - 143 EP - 146 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan ED - Schmidt, Wolfram T1 - Why Africa can spearhead innovative and sustainable cement and concrete technologies globally N2 - The perception of concrete in the society as well as in the politics is rather negative. This becomes obvious in the fact that the phrase “concrete jungle” has become synonym for hapless living with no perspectives. In politics and research funding, it is also not easy to create a broader audience, since concrete is falsely considered as old-fashioned material that is sufficiently understood today and does not need further considerations, particularly compared to allegedly newer materials. However, particularly since the last two decades the technology has completely changed. Binders of today are no more the same binders as used before, and concrete mixture compositions of today diverge quite significantly from compositions in the past. There is little understanding world-wide about that. This causes that potentials the concrete technology bears are wasted. In the broadly found opinion that concrete is old-fashioned and ugly, it is ignored that architectural sins are not inherent to the material, which actually is extremely versatile and CO2-friendly compared to all other construction materials available. It is also ignored that 98% of the outer Earth’s crust are made of the elements cement and concrete are made from, and therefore it will be an illusion to believe that the complementary 2% can create materials to develop regions and infrastructures in less developed areas in the world. For betterment in Africa the infrastructural development should have highest priority, since poor connections between settlements are responsible for enormous Price increases [2], and urban traffic congestion is responsible for an incredible loss of productivity. It is not unrealistic to assume that earners that are dependent on a car get stuck in traffic about 3-4 hours per day in cities like Lagos, Nairobi or Dar es Salaam. However, the traffic congestions do not only affect the car owners negatively but the living of the entire urban population every day. Besides infrastructure, housing should be the other priority, since a large part of the African population does not live in adequate condition. This is a societal problem, since unequal Distribution of wealth is a major driving force for instability in societies. The latter has a global impact, since 8 many phenomena that can be observed all over the world such as political radicalism, xenophobia, terrorism, and migration can often be linked to instable societies. However, the importance of infrastructure has an even wider range. Most African countries go through a change process recently. In order to strengthen very positive perspectives, the focus in politics and research funding is put on issues such as agriculture, energy, and health, which are without doubt extremely important issues. However, it is typically overlooked that all enhancements in these areas can only become effective, when an infrastructure is created to support the implementation of better concepts. Mobility is the key to a prosperous future, and mobility can only be granted by infrastructural construction activities. Hence, compared to many other regions in the world, cement and concrete technologies have a significantly higher relevance in Africa. T2 - 2nd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Accra, Ghana DA - 7.6.2016 KW - Cement KW - Concrete KW - Sustainability KW - Carbon dioxide KW - Polysaccharides KW - Cassava KW - Rheology PY - 2016 SN - 978-3-9817853-1-9 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 2 SP - 7 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Future civil engineering challenges - Skill requirements, new professional profiles and implementation N2 - Urbanisation, habitat, environment, infrastructure and sustainability are major global challenges of the 21st century. By planning, exploiting of resources, building, and maintaining, civil engineers and relevant adjacent disciplines have been carrying a large responsibility for the existing environmental problems. Civil engineers are responsible for 70% of all material uses in the world, and civil construction has been dominating the growth of the developing world for the next decades, with enormous impact on the global climate as well as the distribution of wealth and quality of living in the world. Today a variety of sustainable construction concepts have been developed and discussed. Recently a UNEP report was published, which provides a comprehensive overview of the challenges and potentials in the future from a scientific and industrial point of view. Sustainable solutions based on abundantly available resources (pozzolana and clay) or on renewable instead of limited industrial by-products (e.g. agricultural waste ashes) and new construction echnologies do exist. By applying, promoting and developing the implementation of the existing knowledge into real life constructions, civil engineers also hold the key for the mitigation of the global challenges. Using best practice sustainable construction solutions is particularly of highest importance in the developing world, since the implementation at an early stage creates the highest leverage for positive effects. T2 - 3rd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Johannesburg, South Africa DA - 26.6.2017 KW - Civil Engineering KW - Cement KW - Concrete KW - Global engineering KW - Nano engineered materials KW - Sustainability PY - 2017 SN - 978-3-9818270-7-1 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 3 SP - 9 EP - 14 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Potentials for sustainable cement and concrete technologies - Comparison between Africa and Europe N2 - The fundamental knowledge about cement and concrete has made enormous progress over the last decades, and today it would be possible to find optimised sustainable concrete solutions tailored for every given boundary framework and raw material supply. However, this knowledge barely finds implementation into practice despite the urgent global need to minimise carbon emissions and energy consumption. A major reason is that most concrete developments were historically made in the northern hemisphere, where today over-regulations and stagnating market perspectives slow down innovation drive towards higher sustainability. In most African countries, however, sustainable building is simply an urgent real-life problem. The demand for building is enormous, Standard solutions are not an option, and the pool of innovative local raw materials and concrete concepts is enormous. The paper provides a comprehensive comparison between the boundary frameworks of Europe and Africa, and it is explained why local African solutions shall be given priority over imported solutions. Examples of local African concrete solutions are given, and ideas for a rapid implementation are developed. Most of the potentially useful materials such as agricultural ashes, natural and calcined pozzolans, polysaccharides, etc. have not yet been subject to intensive research to date. Therefore, it is not unlikely to assume that with an open mind for non-Standard solutions, combined with creativity and particularly knowledge and awareness, the next generation of innovative and sustainable concretes will be developed and applied on the African continent. Therefore, the conclusion is that particularly the African continent provides the best starting position to develop better and more sustainable concrete solutions than anywhere else in the world. Hence, Africa can become a global pioneer in green cement and concrete technology with impact to the entire world. N2 - Posljednih desetljeća načinjen je golem napredak u temeljnim znanjima o cementu i betonu. Danas bi bilo moguće naći rješenja za optimalni održivi beton primjeren svakom danom okviru i dobavi sirovina. Međutim, takvo znanje jedva da se primjenjuje u praksi unatoč hitnoj globalnoj potrebi smanjenja na najmanju mjeru emisija ugljika i potrošnje energije. Glavni je razlog što je većina razvoja u području betona tijekom povijesti načinjena u sjevernoj hemisferi gdje danas preregulacija i perspektiva stagnirajućeg tržišta usporavaju inovacije ka većoj održivosti. Međutim, u većini afričkih zemalja održiva gradnja jednostavno je hitni problem svakodnevice. Zahtjevi za gradnjom su golemi, obična rješenja nisu opcija, rezerve inovativnih lokalnih sirovina i mogućnosti primjene betona su golemi. U radu se daje sveobuhvatna usporedba graničnih okosnica Europe i Afrike, a objašnjeno je zašto se lokalnim afričkim rješenjima mora dati prioritet pred uvezenim rješenjima. Većina potencijalno korisnih materijala kao što su pepeli iz poljoprivrede, prirodni i kalcinirani pucolani, polisaharidi itd. do danas nisu bili predmetom intenzivnih istraživanja. Stoga nije nevjerojatno pretpostaviti da će se Nova generacija inovativnih i održivih betona razviti i primijeniti na afričkom kontinentu uz otvorenost prema nestandardnim rješenjima i u kombinaciji s kreativnošću i posebno znanjem i sviješću. Stoga je zaključeno da naročito afrički kontinent osigurava najbolju početnu poziciju za razvoj boljih i održivijih betona nego bilo gdje u svijetu. Prema tome Afrika može postati svjetski pionir u tehnologiji zelenoga cementa i betona s utjecajem na cijeli svijet. T2 - 1st International Conference on Construction Materials for a Sustainable Future CY - Zadar, Croatia DA - 19.4.2017 KW - Africa KW - Sustainability KW - Cement KW - Concrete KW - Admixtures KW - Carbon emissions PY - 2017 SN - 978-953-8168-04-8 SP - 829 EP - 835 CY - Zagreb, Croatia AN - OPUS4-40977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Inès A1 - Mbugua, Rose A1 - Adisa Olonade, Kolawole T1 - Promising bio-based rheology modifying agents for concrete N2 - Today, concrete engineers can vary consistencies between very stiff and self-compacting. The possibility to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology of concrete systems can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere, and particularly in Africa, the effective use of chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in Africa it is difficult to use them, due to lacking local supply and supply infrastructure. For Africa, concrete admixtures are largely shipped or transported from Europe, the Arabian Peninsula, or Asia. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is not a large variety of products available in the market. However, bio-based chemicals have been used in construction for ages effectively. Due to the enormous relevance of rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in most countries in Africa. However, alternatives are available, which can be found in many regions. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - Rheologie komplexer Fluide: Theorie, Experiment und Anwendung, DRG/ProcessNet | Gemeinsame Diskussionstagung CY - Berlin, Germany DA - 13.3.2017 KW - Africa KW - Cement KW - Concrete KW - Admixtures KW - Polysaccharides KW - Cassava KW - Starch KW - Triumfetta Pendrata A. Rich KW - Nkui PY - 2016 AN - OPUS4-40979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Alexander, Mark A1 - John, Vanderley T1 - Education for sustainable use of cement based materials N2 - Structural design and application have always been linked to the compressive strength of concrete as the main relevant criterion. This was justifiable in the past, where concrete consisted of water, ordinary Portland cement and aggregates, but this concept is no longer relevant for modern and more sustainable cement and concrete. Despite these new developments, existing standards, guidelines and academic curricula have not been much updated and are still used worldwide. There is a need to change this situation by proper education of the users. This overview describes the challenges that arise at a user Level from the higher complexity of modern concrete, and defines needs and requirements for enhanced applicability of sustainable concrete concepts. Furthermore, recommendations are given on how better concrete practice can be communicated to all the involved parties, from civil and design engineers to constructors and site-appliers on the construction site. KW - Cement KW - Concrete KW - Sustainability KW - Environment KW - Carbon footprint KW - Education KW - Climate PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0008884616307189?via%3Dihub U6 - https://doi.org/10.1016/j.cemconres.2017.08.009 SN - 0008-8846 SN - 1873-3948 VL - 114 SP - 103 EP - 114 PB - Elsevier AN - OPUS4-47673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-476748 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Effects and potentials of plant based chemical admixtures on the performance of cementitious construction materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio-based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil-based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfetta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2019 AN - OPUS4-47675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -