TY - CONF A1 - Vasiliou, Eleni A1 - Schmidt, Wolfram A1 - Stefanidou, Maria A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas ED - Amziane, Sofiane ED - Sonebi, Mohammed ED - Charlet, Karine T1 - Effectiveness of starch ethers as rheology modifying admixtures for cement based systems T2 - RILEM Proceedings PRO 119 N2 - Polysaccharides are important rheology modifying admixtures in the building material sector. The use of starch is becoming increasingly important, due to many ecological and economic advantages. In the construction sector, starch ethers are being used as thickeners and as means to increase the yield stress. The starch ethers that are available on the market differ in their behaviour, which can vary greatly depending upon the binder system and mortar composition, e.g. solid volume content, binder type, additional admixtures. In view of the limited knowledge about the influence of molecular modifications associated with cement based systems, some fundamental rheological functional mechanisms were analysed in this study. The differently modified starch ethers used were derived from potatoes. They varied in their charges and degrees of hydroxypropylation. The setting and the flow behaviour of all examined variations of starch ethers were analysed in cement pastes. In order to illustrate the effects of the starch ethers that were used, the water-cement ratio (w/c) was held constant in all the mixtures [Schmidt 2012]. The results indicated significant differences in setting and flow behaviour. T2 - Second International RILEM Conference on Bio-based Building Materials CY - Clermont-Ferrand, France DA - 21.06.2017 KW - Rheology KW - Polysaccharides KW - Cement KW - Concrete KW - Starch KW - Polycarboxylate PY - 2017 SN - 978-2-35158-192-6 SP - 81 EP - 85 PB - RILEM S.A.R.L CY - Paris, France AN - OPUS4-43548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, I. L. A1 - Mbugua, R. A1 - Olonade, K. A. ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Natural rheology modifying admixtures for concrete T2 - Tagungsband zum 26. Workshop und Kolloquium "Rheologische Messungen an Baustoffen" N2 - The possibility to tailor the rheology of concrete eventually opened up the path to new technologies, where design criteria are no longer limited to the compressive strength. Thus, it can be concluded that the capability to control the rheology of concrete can be considered as catalyst for many of today’s concrete innovations. In the same way rheology modifying admixtures will be key to mastering the challenges of the next decades. In many regions of the Southern hemisphere, the effective use of chemical admixtures would significantly contribute to solve problems induced by the challenging climate, but particularly in Africa there is often a lack of local supply and supply infrastructure. In Africa, concrete admixtures are largely shipped or transported from outside the continent. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is no large variety of products available in the market. Due to the enormous relevance of rheology modifying admixtures, it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing and without enormous transportation distances, since these plants are typically regionally abundantly available, cheap, and they are environmental friendly. The paper presents an overview of various options for rheology modifying admixtures, that can be found in Africa, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - 26. Workshop und Kolloquium "Rheologische Messungen an Baustoffen" CY - Regensburg, Germany DA - 21.02.2017 KW - Concrete KW - Rheology PY - 2017 SN - 978-3-7439-0171-1 SP - 75 EP - 87 PB - tredition GmbH CY - Hamburg AN - OPUS4-40599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Govin, A. A1 - Schmidt, Wolfram A1 - Bartholin, M. C. A1 - Grosseau, P. ED - Amziane, Sofiane ED - Sonebi, M. T1 - Effect of Guar Gum Derivatives Combined with Superplasticizers on Properties of Portland Cement-Pastes T2 - 2nd International Conference on Bio-based Building Materials & 1st Conference on ECOlogical valorisation of GRAnular and FIbrous materials N2 - Chemical admixtures allow to the create a variety of fresh and hardened state properties in cementitious materials. In the case of self-compacting concrete, plasticizers or superplasticizers are introduced with the aim to decrease the yield stress and the viscosity of the materials. However, in order to prevent segregation and bleeding, and to improve the water retention of cement-based system, stabilizing agents or viscosity agents are often introduced in addition. Among these admixtures, polysaccharides are most commonly used. The aim of this study is to provide an understanding of competitive or synergetic effects induced by the combination of hydroxypropyl guar stabilizing agents (HPG) and superplasticizers on cement pastes. Two polycarboxylate superplasticizers (PCE) exhibiting different charge densities and one HPG were studied. It was found that the combination of HPG with PCE superplasticizer strongly affects the rheological behavior of cement pastes. Despite the presence of HPG, the viscosity of the pastes strongly decreased with increasing dosage of PCE until it became close to the viscosity of a cement paste with PCE only. However, the use of HPG in combination with PCE allows maintaining a significant yield stress in the cement paste compared to PCE alone. The increase in the charge density of the PCE seemed to amplify the drop of the viscosity and to reduce the gain on the yield stress induced by HPG. The results also highlight a delay in the setting-time of the cement paste by adding HPG and PCE. The delay induced by HPG is significantly lower than that generated by PCEs. However, the combination of the both kind of admixtures leads to a slightly shorter setting-time compared to the PCE alone. T2 - 2nd International Conference on Bio-based Building Materials & 1st Conference on ECOlogical valorisation of GRAnular and FIbrous materials CY - Clermont-Ferrand, France DA - 21.06.2017 KW - Guar gum KW - Polysaccharides KW - Superplasticizer KW - Cement KW - Rheology PY - 2017 VL - PRO 119 SP - 55 EP - 61 PB - RILEM Publications S.A.R.L. CY - Paris AN - OPUS4-41038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan ED - Schmidt, Wolfram T1 - Why Africa can spearhead innovative and sustainable cement and concrete technologies globally T2 - Proceedings of the 2nd symposium knowledge exchange for young scientists (KEYS) - Valorisation of industrial by-products for sustainable cement and concrete construction - Improvement of solid waste management N2 - The perception of concrete in the society as well as in the politics is rather negative. This becomes obvious in the fact that the phrase “concrete jungle” has become synonym for hapless living with no perspectives. In politics and research funding, it is also not easy to create a broader audience, since concrete is falsely considered as old-fashioned material that is sufficiently understood today and does not need further considerations, particularly compared to allegedly newer materials. However, particularly since the last two decades the technology has completely changed. Binders of today are no more the same binders as used before, and concrete mixture compositions of today diverge quite significantly from compositions in the past. There is little understanding world-wide about that. This causes that potentials the concrete technology bears are wasted. In the broadly found opinion that concrete is old-fashioned and ugly, it is ignored that architectural sins are not inherent to the material, which actually is extremely versatile and CO2-friendly compared to all other construction materials available. It is also ignored that 98% of the outer Earth’s crust are made of the elements cement and concrete are made from, and therefore it will be an illusion to believe that the complementary 2% can create materials to develop regions and infrastructures in less developed areas in the world. For betterment in Africa the infrastructural development should have highest priority, since poor connections between settlements are responsible for enormous Price increases [2], and urban traffic congestion is responsible for an incredible loss of productivity. It is not unrealistic to assume that earners that are dependent on a car get stuck in traffic about 3-4 hours per day in cities like Lagos, Nairobi or Dar es Salaam. However, the traffic congestions do not only affect the car owners negatively but the living of the entire urban population every day. Besides infrastructure, housing should be the other priority, since a large part of the African population does not live in adequate condition. This is a societal problem, since unequal Distribution of wealth is a major driving force for instability in societies. The latter has a global impact, since 8 many phenomena that can be observed all over the world such as political radicalism, xenophobia, terrorism, and migration can often be linked to instable societies. However, the importance of infrastructure has an even wider range. Most African countries go through a change process recently. In order to strengthen very positive perspectives, the focus in politics and research funding is put on issues such as agriculture, energy, and health, which are without doubt extremely important issues. However, it is typically overlooked that all enhancements in these areas can only become effective, when an infrastructure is created to support the implementation of better concepts. Mobility is the key to a prosperous future, and mobility can only be granted by infrastructural construction activities. Hence, compared to many other regions in the world, cement and concrete technologies have a significantly higher relevance in Africa. T2 - 2nd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Accra, Ghana DA - 7.6.2016 KW - Cement KW - Concrete KW - Sustainability KW - Carbon dioxide KW - Polysaccharides KW - Cassava KW - Rheology PY - 2016 SN - 978-3-9817853-1-9 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 2 SP - 7 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Olonade, K. A. A1 - Mbugua, R. N. A1 - Lenz, F. J. A1 - Tchetgnia Ngassam, I. T1 - Bio-Based Rheology Modifiers for High Performance Concrete – Possible Modes of Actions and Case Study for Cassava Starch in West Africa T2 - 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete N2 - Polymers that help tailoring rheological properties during the casting process have become inevitable constituents for all kinds of high-performance concrete technologies. Due to lacking industries, these typically crude-oil based admixtures are not readily available in many parts of the world, which limits the implementation of more sustainable high-performance construction technologies in these regions. Alternative polymers, which often demand for less processing, can be derived from local plant-based resources. The paper provides experimental data of flow tests of cement pastes with polysaccharides from Triumfetta pendrata A. Rich, acacia gum and cassava without and in the presence of polycarboxylate ether superplasticizer. The flow tests are amended by observations of the zeta potentials and the hydrodynamic diameters in the presence of and without calcium ions in the dispersion medium. The results show that in the presence of and without calcium ions all polysaccharides provide negative zeta potentials, yet, they affect flowability and thixotropy in different ways. Cassava starch, acacia gum, and the gum of Triumfetta pendrata A. Rich qualified well for robustness improvement, strong stiffening, and additive manufacturing, respectively. The reason for the different effects can be found in their average sizes and size distribution. Due to the promising results, a flow chart for local value chains is derived on the example of yet unused cassava wastes, which can be converted in parallel. T2 - 3rd International Conference on the Application of Superabsorbent Polymers CY - Skukuza, South Africa KW - Admixtures KW - Polysaccharides KW - Rheology KW - Thixotropy KW - Concrete PY - 2020 SN - 978-3-030-33341-6 SN - 978-3-030-33342-3 DO - https://doi.org/10.1007/978-3-030-33342-3_17 SP - 158 EP - 166 PB - Springer AN - OPUS4-58404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -