TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-476748 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pott, U. A1 - Crasselt, Claudia A1 - Fobbe, N. A1 - Haist, M. A1 - Heinemann, M. A1 - Hellmann, S. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Lei, L. A1 - Li, R. A1 - Link, J. A1 - Lowke, D. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Nicia, D. A1 - Plank, J. A1 - Reißig, S. A1 - Schäfer, T. A1 - Schilde, C. A1 - Schmidt, Wolfram A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Strybny, B. A1 - Ukrainczyk, N. A1 - Wolf, J. A1 - Xiao, P. A1 - Stephan, D. T1 - Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum –Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of base materials is the prereq- uisite for further research. In this paper, the characterization data of the reference materials (CEM I 42.5 R, limestone pow- der, calcined clay and a mixture of these three components) used in the second funding phase of the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented under the aspects of chemical and min- eralogical composition as well as physical and chemical properties. The data were collected based on tests performed by up to eleven research groups involved in this cooperative program. KW - Portland cement KW - Limestone powder KW - Calcined clay KW - Sustainable cement KW - DFG SPP 2005 PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569913 VL - 47 SP - 1 EP - 19 PB - Elsevier AN - OPUS4-56991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiedeitz, M. A1 - Schmidt, Wolfram A1 - Härder, M. A1 - Kränkel, T. T1 - Performance of rice husk ash as supplementary cementitious material after production in the field and in the lab N2 - Supplementary cementitious materials (SCM) can reduce the total amount of Portland cement clinker in concrete production. Rice husk ashes (RHA) can be converted from an agricultural by-product to a high-performance concrete constituent due to a high amount of reactive silica with pozzolanic properties if they are burnt under controlled conditions. The way and duration of combustion, the cooling process as well as the temperature have an effect on the silica form and thus, the chemical and physical performance of the RHA. Various studies on the best combustion technique have been published to investigate the ideal combustion techniques. Yet, the process mostly took place under laboratory conditions. Investigating the difference between the performance of RHA produced in a rural environment and laboratory conditions is useful for the assessment and future enhancement of RHA production, and its application both as building material, for example in rural areas where it is sourced in large quantities, and as additive for high performance concrete. Thus, the paper presents a comparison between RHA produced under rudimentary conditions in a self-made furnace in the rural Bagamoyo, Tanzania and under controlled laboratory conditions at the Technical University of Munich, Germany, with different combustion methods and temperatures. In a second step, RHA was ground to reach particle size distributions comparable to cement. In a third step, cement pastes were prepared with 10%, 20% and 40% of cement replacement, and compared to the performance of plain and fly ash blended cement pastes. The results show that controlled burning conditions around 650 °C lead to high reactivity of silica and, therefore, to good performance as SCM. However, also the RHA burnt under less controlled conditions in the field provided reasonably good properties, if the process took place with proper burning parameters and adequate grinding. The knowledge can be implemented in the field to improve the final RHA performance as SCM in concrete. KW - Rice husk ash KW - Agricultural by-product KW - Supplementary cementitious material KW - Waste management KW - Carbon dioxide emissions PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568953 SN - 1996-1944 VL - 13 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-56895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568980 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cunningham, P. R. A1 - Mezhov, Alexander A1 - Schmidt, Wolfram T1 - Revealing Value from Bioderived Polymers: Effects of Locally Sourced Polysaccharides on the Rheology of Limestone Mixtures N2 - Admixtures are important constituents to enhance the performance of concrete. They allow for more efficient use of binders which can mitigate negative environmental impacts from producing cement-based materials. Commonly used rheology modifying agents like polycarboxylate ethers or cellulose ethers are synthetic or semi-synthetic, respectively. This requires additional energy consumption for their production and global supply chains particularly for many developing regions, which will be large consumers of concrete in the future. However, many locally available bio-based polysaccharides could be effectively used instead. These polymers are often overlooked by engineers and scientists due to their limited distribution and inherent complexity, yet they represent an underleveraged source of precursors for admixtures. This study investigates the action mechanisms of some bio-based rheology modifying agents, i.e., acacia gum and miscanthus gum, and provides a comparison to a conventionally modified starch. The results show that the mechanism of action of these polymers is closely related to the composition of the mixture, mixing regime, and the composition of the aqueous phase. Depending on the agent, either plasticizing or stabilizing effects on rheology can be revealed. T2 - ICBBM: International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Polysaccharides KW - Superplasticizers KW - Hydration KW - Cement PY - 2023 U6 - https://doi.org/10.1007/978-3-031-33465-8_60 SN - 2211-0852 VL - 45 SP - 782 EP - 792 PB - Springer Nature Switzerland AG CY - Switzerland AN - OPUS4-58726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ji, Y. A1 - Becker, S. A1 - Lu, Z. A1 - Mezhov, Alexander A1 - von Klitzing, R. A1 - Schmidt, Wolfram A1 - Stephan, D. T1 - Effect of resting time on rheological properties of glass bead suspensions: Depletion and bridging force among particles N2 - The effect of resting time on the rheological properties of cement suspensions is generally explained by early formed structure and overconsumption of polycarboxylate superplasticizers (PCEs). In this paper, we propose that the influence of resting time on the rheological properties is closely related to size variation of non-absorbed PCE. To identify this, glass bead suspensions were prepared with various amounts of PCE and ionic solution, and their rheological properties were evaluated at various times. We found that the yield stress increases with time at higher PCE concentrations and higher ionic strength solutions. Adsorbed PCE during resting tends to bridge the particles rather than disperse them. In addition, it was found that hydrodynamic radius of PCE increased with resting time, and depletion forces resulting from non-absorbed PCE size changes correlate well with the increased yield stress. KW - Depletion force KW - Ionic stregth KW - PCE KW - Rheology KW - Resting time PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587193 SN - 0002-7820 SP - 1 EP - 16 PB - Wiley online library CY - Weinheim AN - OPUS4-58719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezhov, Alexander A1 - Zhang, K. A1 - Schmidt, Wolfram T1 - Interactions of Biobased Rheology Modifying Agents with Superplasticizer in Cement Paste N2 - Organic admixtures are an indispensable component of modern concrete. Thus, their purposeful application is not only technically and economically viable but in addition an inevitable tool to make concrete more environmentally friendly. In this context, the use of polysaccharides has increasingly gained interest in the built environment as sustainable resource for performance enhancement. However, due to its origin, biopolymers possess a vast variety of molecular structures which can result in incompatibilities with other polymers present in concrete, such as superplasticizers. The present study highlights effects of the joint application of different types of starches and polycarboxylates with respect to their influence on cement hydration and structural build-up of cement pastes. KW - Polysaccharides KW - Superplasticizers KW - Hydration KW - Cement PY - 2022 U6 - https://doi.org/10.4028/www.scientific.net/CTA.1.563 SN - 2674-1237 SP - 563 EP - 568 PB - Trans Tech Publications Ltd, Switzerland CY - Basel, Switzerland. AN - OPUS4-58325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühler, M. M. A1 - Hollenbach, P. A1 - Michalski, A. A1 - Meyer, S. A1 - Birle, E. A1 - Off, R. A1 - Lang, Ch. A1 - Schmidt, Wolfram A1 - Cudmani, R. A1 - Fritz, O. A1 - Baltes, G. A1 - Kortmann, G. T1 - The Industrialisation of Sustainable Construction: A Transdisciplinary Approach to the Large-Scale Introduction of Compacted Mineral Mixtures (CMMs) into Building Construction N2 - Abstract: Increasing demand for sustainable, resilient, and low-carbon construction materials has highlighted the potential of Compacted Mineral Mixtures (CMMs), which are formulated from various soil types (sand, silt, clay) and recycled mineral waste. This paper presents a comprehensive inter- and transdisciplinary research concept that aims to industrialise and scale up the adoption of CMM-based construction materials and methods, thereby accelerating the construction industry’s systemic transition towards carbon neutrality. By drawing upon the latest advances in soil mechanics, rheology, and automation, we propose the development of a robust material properties database to inform the design and application of CMM-based materials, taking into account their complex, time-dependent behaviour. Advanced soil mechanical tests would be utilised to ensure optimal performance under various loading and ageing conditions. This research has also recognised the importance of context-specific strategies for CMM adoption. We have explored the implications and limitations of implementing the proposed framework in developing countries, particularly where resources may be constrained. We aim to shed light on socio-economic and regulatory aspects that could influence the adoption of these sustainable construction methods. The proposed concept explores how the automated production of CMM-based wall elements can become a fast, competitive, emission-free, and recyclable alternative to traditional masonry and concrete construction techniques. We advocate for the integration of open-source digital platform technologies to enhance data accessibility, processing, and knowledge acquisition; to boost confidence in CMM-based technologies; and to catalyse their widespread adoption. We believe that the transformative potential of this research necessitates a blend of basic and applied investigation using a comprehensive, holistic, and transfer-oriented methodology. Thus, this paper serves to highlight the viability and multiple benefits of CMMs in construction, emphasising their pivotal role in advancing sustainable development and resilience in the built environment. KW - Decarbonisation KW - Circular economy KW - Recycled materials KW - Demolition wastes KW - Low-carbon construction KW - Building with earth KW - Compressed earth KW - Rammed earth KW - Sustainable construction PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-583260 VL - 15 IS - 13 SP - 1 EP - 25 PB - MDPI AN - OPUS4-58326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Carvello, J. M. F. A1 - Carvalho Fontes, W. A1 - de Azevedo, C. F. A1 - Brigolini, G. J. A1 - Schmidt, Wolfram A1 - Fiorotti Peixoto, R. A. T1 - Enhancing the eco-efficiency of concrete using engineered recycled mineral admixtures and recycled aggregates N2 - Non-conventional densely packed concrete mixtures are proposed and evaluated in this paper using engineered recycled mineral admixtures and recycled aggregates obtained from steel slag, quartz mining tailings, and quartzite mining tailings. High fines content sand-concretes containing coarser- and finer-than-cement recycled powders were designed to obtain blends with broader particle-size ranges and improved packing density. As a result, compressive strength up to 99 MPa, cement intensity up to 2.33 kg/m³/MPa, and consumption of recycled material up to 95 vol% were obtained. Compressive strengths up to 66 MPa and cement intensity up to 2.34 kg/m³/MPa were also obtained with the addition of coarse aggregates to such sand-concrete mixtures, with consumption of recycled material up to 96.5%. The results launch new insights on the role of recycled admixtures and aggregates on the mixture design of cement-based composites regarding efficiency improvement and technological performance. KW - Low-cement concrete KW - Recycled mineral admixture KW - Basic oxygen furnace slag KW - Quartzite mining tailing KW - Packing density PY - 2020 U6 - https://doi.org/10.1016/j.jclepro.2020.120530 VL - 257 SP - 1 EP - 12 PB - Elsevier AN - OPUS4-58401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fini, E. H. A1 - Poulikakos, L. A1 - de Claville Christiansen, J. A1 - Schmidt, Wolfram A1 - Parast, M. M. T1 - Toward sustainability in the built environment: An integrative approach N2 - The built environment significantly impacts the health of individuals and populations in various ways. The health and durability of the built environment are intertwined with availability ofnaturally occurring and man-made resources and their supply chains. Therefore, resource con­ servation is a key to ensure sustainability of built environments. Many industrial wastes can be turned into valuable resources for reuse in construction of the built environment. For instance, biowaste (woody/ leafy biomass and animal waste) have been used to make construction adhesives (Fini et al., 2011), some urban wastes have been used in road construction (Poulikakos et al., 2017; Schmidt et al., 2021), end of life plastics and polymers have made their way to roadway construction, bio-oils and algae harvested from wastewater treatment plants has been used to make antiaging for outdoor building elements to mitigate UV aging (Kabir et al., 2021); sulfur has been used as an extender in asphalt and recycled mineral powders such as silica and alumina have been used to increase strength and durability against acidic compounds (Fini et al., 2019). These are just a few examples of recycling venues with beneficial uses in the built environment. The construction and operation of the built environment and the traffic that it attracts or facilitates significantly contribute to the emis­ sion of greenhouse gasses (GHG) and cause air pollution. The direct and indirect impacts of GHG and air pollutants on the environment and so­ cieties have been weil established. The built environment can be used as a powerful platform not only for recycling and resource conservation but also to remove near-ground gaseous contaminants. This can be done via tailored design and engineering of adsorptive construction materials via recycling of waste materials. For instance, advanced sorbent systems can be made for removing C02, H2S, and formaldehyde from air. This re­ quires tailored sorbent design, topology optimization, and catalytic conversion of collected gaseous compounds to name a few. This special issue covers innovative materials, methods, and man­ agement practices which aim to simultaneously address durability ofthe built environment, air quality, resource conservation, and supply chain resilience. Such innovative materials, methods, and management prac­ tices will transform the built environment into not only an active contributor to no waste, no pollution for healthy environment, but also a medium that converts the waste and pollution into beneficial products for use in the built environment, thereby promoting resource conser­ vation. Followings are examples of topics that the special issue is interested in: • Venuses to advance resource conservation specifically via novel ap­ proaches in the built environment. • Innovative construction materials for passive or active adsorption of harmful gaseous emissions to conserve air, energy, and water. • Advanced materials, methods, and management practices to pro­ mote well-being of the built environment. • Smart buildings to promote resource conservation. • Research convergence in the built environment for zero waste, zero pollution economy. KW - Impacts KW - Resource PY - 2021 U6 - https://doi.org/10.1016/j.resconrec.2021.105676 VL - 172 SP - 1 EP - 2 PB - Elsevier AN - OPUS4-58402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -