TY - CONF A1 - Schmidt, Wolfram A1 - Leinitz, Sarah A1 - Kühne, Hans-Carsten ED - Malhotra, V. M. ED - Gupta, P. R. ED - Holland, T. C. T1 - Effects of particle volume fraction and size on polysaccharide stabilizing agents N2 - Polysaccharides modify the rheological properties of cement based systems. Depending upon their chemistry, molecular architecture, and adsorption tendency, they have different modes of action. Some polysaccharides like diutan gum have strong effect on the fluid phase; others like starch strongly interact with particles. This paper presents effects of diutan gum and starches in presence of polycarboxylates. Rheometric investigations with varied particle volume fractions and increasing coarse aggregate diameters were conducted. The results show that starches have stronger influence on the rheology at high particle volume fractions than diutan gum. At lower particle volume fractions this trend is inverted. Experiments with aggregates sizes up to 16 mm (0.63 in.) indicate that stabilizing agent influences on the effects of aggregates on yield stress were small; however up to 1.0 mm (0.04 in.), a significant effect on the plastic viscosity could be observed, which levelled off at larger diameters. T2 - 11th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Ottawa, Canada DA - 12.07.2015 KW - Diutan gum KW - Starch KW - Polysaccharides KW - Polycarboxylate ether KW - Volume fraction PY - 2015 SN - 9781942727224 SP - SP-302-03, 39 EP - 52 AN - OPUS4-36861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit A1 - Brouwers, H.J.H. ED - Aguiar, J. B. ED - Jalali, S. ED - Camoes, A. ED - Ferreira, R.M. T1 - Influence of ambient temperature conditions on the effect of stabilising polymers in cementitious building materials T2 - 13th International Congress on polymers in concrete - ICPIC 2010 CY - Funchal-Madeira, Portugal DA - 2010-02-11 KW - Stabilising agent KW - Polycarboxylate ether KW - Polysaccharides KW - Starch ether KW - Biopolymers KW - Rheology KW - Setting PY - 2010 SN - 978-972-99179-4-3 SP - 241 EP - 248 CY - Funchal-Madeira, Portugal AN - OPUS4-21971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasiliou, Eleni A1 - Schmidt, Wolfram A1 - Stefanidou, Maria A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas ED - Amziane, Sofiane ED - Sonebi, Mohammed ED - Charlet, Karine T1 - Effectiveness of starch ethers as rheology modifying admixtures for cement based systems N2 - Polysaccharides are important rheology modifying admixtures in the building material sector. The use of starch is becoming increasingly important, due to many ecological and economic advantages. In the construction sector, starch ethers are being used as thickeners and as means to increase the yield stress. The starch ethers that are available on the market differ in their behaviour, which can vary greatly depending upon the binder system and mortar composition, e.g. solid volume content, binder type, additional admixtures. In view of the limited knowledge about the influence of molecular modifications associated with cement based systems, some fundamental rheological functional mechanisms were analysed in this study. The differently modified starch ethers used were derived from potatoes. They varied in their charges and degrees of hydroxypropylation. The setting and the flow behaviour of all examined variations of starch ethers were analysed in cement pastes. In order to illustrate the effects of the starch ethers that were used, the water-cement ratio (w/c) was held constant in all the mixtures [Schmidt 2012]. The results indicated significant differences in setting and flow behaviour. T2 - Second International RILEM Conference on Bio-based Building Materials CY - Clermont-Ferrand, France DA - 21.06.2017 KW - Rheology KW - Polysaccharides KW - Cement KW - Concrete KW - Starch KW - Polycarboxylate PY - 2017 SN - 978-2-35158-192-6 SP - 81 EP - 85 PB - RILEM S.A.R.L CY - Paris, France AN - OPUS4-43548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-476748 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -