TY - CONF A1 - Schmidt, Wolfram A1 - Sonebi, M. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Diouri, A. ED - Khachani, N. ED - Alami Talbi, M. ED - Ait Brahim, L. ED - Bahi, L. T1 - Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions (Proceedings) N2 - Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technological specifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions CY - Rabat, Morocco DA - 27.11.2013 KW - Rheology KW - Superplasticizers KW - Stabilising agents PY - 2013 SN - 978-9954-32-689-3 SP - 1 EP - 6 AN - OPUS4-30040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonebi, M. A1 - Khatib, J. A1 - Schmidt, Wolfram ED - Diouri, A. ED - Khachani, N. ED - Alami Talbi, M. ED - Ait Brahim, L. ED - Bahi, L. T1 - Influence of the type of viscosity-modifying admixtures and metakaolin on the rheology of grouts T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions (Proceedings) N2 - The Viscosity-modifying admixtures (VMAs) contribute to the control of the rheology of grouts and are used to enhance plastic viscosity, cohesion, stability, and resistance to bleeding of cement-based systems. This paper reports the results of an investigation on the effect of type of VMAs, namely two types of diutan gums and a welan gum and metakaolin (MTK), plus a superplasticiser, on the rheology behaviour of cement grouts. All mixes were made with polycarboxylic superplasticiser at 0.6% and 0.9%. The dosages of VMAs were 0.05%, and 0.10%, with a fixed water-to-binder ratio of 0.40. The investigated fresh properties of the grouts included the mini-slump flow, plate cohesion, and rheology parameters: namely yield value and plastic viscosity. The rheological parameters were obtained using a vane viscometer. Control grouts (with and without superplasticiser and VMA) were also tested and compared to mixes containing VMAs. The results indicated that the incorporation of MTK reduced the fluidity and increased the plate cohesion and yield stress, and plastic viscosity due to the higher surface area of MTK. The diutan gum grouts improved the grout fresh properties and rheology compared to the welan gum grouts. T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions CY - Rabat, Morocco DA - 27.11.2013 KW - Viscosity modifying agent KW - Metakaolin KW - Diutan gum KW - Welan gum KW - Rheology PY - 2013 SN - 978-9954-32-689-3 SP - 1 EP - 6 AN - OPUS4-30041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Sonebi, M. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa JF - Chemistry and Materials Research N2 - Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technologicalspecifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. KW - Rheology KW - Admixtures KW - Concrete KW - Superplasticizers KW - Polycarboxylate ether KW - Viscosity modifying agents PY - 2013 SN - 2224-3224 SN - 2225-0956 VL - 5 SP - 115 EP - 120 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-30948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -