TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - The working mechanism of starch and diutan gum in cementitious and limestone dispersions in presence of polycarboxylate ether superplasticizers JF - Applied rheology N2 - Polysaccharides provide high potential to be used as rheology modifying admixtures in mineral binder systems for the construction industry such as concrete or mortar. Since superplasticizers have become state of technology, today, concrete is more and more adjusted to flowable consistencies. This often goes along with the risk of segregation, which can be effectively avoided by adding stabilising agents supplementary to superplasticizers. Stabilising agents are typically based on polysaccharides such as cellulose, sphingan gum, or starch. Starch clearly distinguishes in its effect on rheology from other polysaccharides, mainly due to the strong influence of amylopectin on the dispersion and stabilisation of particles. Based on rheometric investigations on cementitious and limestone based dispersions with different volumetric water to solid ratios, the mode of operation of modified potato starch is explained in comparison to a sphingan gum. It is shown that the stabilising effect of starch in a coarsely dispersed system is mainly depending upon the water to solid ratio and that above a certain particle volume threshold starch mainly affects the dynamic yield stress of dispersions, while plastic viscosity is affected only to a minor degree. Sphingans operate more independent of the particle volume in a coarsely dispersed system and show significantly higher effect on the plastic viscosity than on the yield stress. In systems incorporating superplasticizers, influences of both stabilising agents on yield stress retreat into the background, while both observed polysaccharides maintain their effect on the plastic viscosity. KW - Cement KW - Limestone KW - Rheology KW - Stabilising agent KW - Coarsely dispersed systems KW - Diutan gum KW - Starch ether PY - 2013 DO - https://doi.org/10.3933/ApplRheol-23-52903 SN - 1430-6395 SN - 0939-5059 VL - 23 IS - 5 SP - 52903-1 EP - 52903-12 PB - Kerschensteiner CY - Lappersdorf AN - OPUS4-29932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Leinitz, Sarah A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas T1 - The effect of superplasticizers on rheology and early hydration kinetics of rice husk ash-blended cementitious systems JF - Construction and Building Materials N2 - Superplasticizers (SPs) have been employed in concrete technology for decades to improve the workability of concrete in its fresh state. The addition of SPs in cement-based systems affects the early properties. Although the interaction of the cement particles with various SPs has been extensively researched, there still exists limited research on the interaction of SPs with supplementary cementitious materials such as rice husk ash (RHA). This paper investigates the rheological properties and early hydration kinetics of RHA-blended systems with three types of SPs, a polycarboxylate ether (PCE) and two lignosulphonates (LS-acc and LS-ret). In rheological properties, the addition of SP causes an initial improvement of workability as the yield stress is significantly reduced. The pastes with PCE and LS-acc show a slight increase of yield stress over time whereas pastes with LS-ret tend to lower the yield stress slightly over time, further improving the workability. Without SP, pastes with RHA show a lower yield stress but an increase in plastic viscosity as cement is further replaced with RHA. The addition of the LS SPs is observed to lower the plastic viscosity but remains constant with further replacement of cement with RHA. This indicates that LS SPs further adsorbs on RHA particles and hydration products produced causing dispersion of the particles within the system. In early hydration kinetics, pastes with PCE retard hydration and the degree of retardation is further increased with LS SPs. In the presence of RHA, the retardation of LS SP systems is significantly reduced. The pastes with PCE show more ettringite in the SEM micrographs, but is observed to be shorter needles. This indicates an initial good workability for PCE. However, C-S-H and CH were observed to be low in quantity, whereby the pastes with LS show more nucleation sites for C-S-H and CH. The ettringite needles in the LS systems were similar in quantity and more elongated in some cases but not abundant as in the PCE systems. KW - Plastic viscosity KW - Cement KW - CO2 reduction KW - Supplementary cementitious materials KW - Rice husk ash KW - Superplasticizers KW - Hydration KW - Rheology KW - Yield stress KW - Slump flow PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0950061817310978?via%3Dihub DO - https://doi.org/10.1016/j.conbuildmat.2017.05.197 SN - 0950-0618 SN - 1879-0526 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 150 SP - 511 EP - 519 PB - Elsevier Ltd. AN - OPUS4-41036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -