TY - CONF A1 - Schmidt, Wolfram T1 - Challenges of the African environmental conditions for concrete mixture composition N2 - Concrete technology was exposed to a rapid development during the last three decades. For the longest time in its history, concrete was considered as a three component System consisting of aggregates, which are bound by the hardened cement paste consisting of hydrated cement. Traditionally, the only way of adjusting the consistency of concrete was using well adjusted aggregates and grading curves and adding excess water to the concrete, accepting that the latter in return reduces strength and durability. During the last three decades, however, concrete has developed further from a three component System towards an (at least) five component system, since the use of mineral additions and Chemical admixtures has become state of the art. Both components are able to enhance the workability, the compactability, and the density of the microstructure with effects on strength, ductility and durability, while cement can be saved in parallel. Due to reasonable use of admixtures and additions, concrete can be designed to match mechanically high performance specifications. Traditionally, cement paste was considered the weakest component in concrete. Flowever, in modern concrete a good paste composition can yield highest performance, passing the role of the mechanical bottleneck towards the aggregates. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 KW - Cement KW - Concrete KW - Mixture composition KW - Africa KW - Climatic conditions PY - 2011 SN - 978-3-9814281-4-8 SP - 37 EP - 49 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramge, Peter A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Effect of the storage of cement on early properties of cementitious systems N2 - As soon as cement is mixed with water, the hydration reaction starts to set of. The progression of the hydration process is governed by the amount and the availability of water and its possibility to access the unhydrated cement grain surfaces. For a total hydration cement theoretically requires water amounting approximately 0.38 of its own mass. Nevertheless, due to the cement’s highly hygroscopic nature, already the moisture in the ambient air can cause first hydration reactions to set in upon the cement grain surfaces. Such pre-hydration processes have an effect on the cement's properties. Dpending on the specific conditions during the storage the significance of the impact on certain properties can vary. If cement is consumed soon after production and is transported only short distances in a silo wagon to its final destination for immediate use without further stock transfer, the effects are rather negligible. However, if cement is delivered in bags, transported over long distances, shifted serval times and stored for longer time periods until it is finally consumend, these effects can be quite severe. Due to the actual logistical situation with comparably few cement plants, large delivery distances and partially less developed infrastructures, the latter scenario pictures the situation for the most cases in Africa quite well. In order to verify the relevance of the pre-hydation for practical application, a series of tests was conducted at the German Federal Institute for Materials Research and Testing (BAM). The influence of the cement storage on gresh and hardened concrete properties was investigated for different concrete and mortar types. The investigations show that the impact of the storage conditions is more pronounced for specialized concretes with high sophisticated optimized mixture compositions containing admixtures. Nevertheless, the effects also occur for ordinary concrete and should not be ignored. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Cement KW - Storage KW - Ambient conditions KW - Hydration KW - Pre-hydration KW - Atmospheric humidity PY - 2013 SN - 978-3-9815360-3-4 SP - 339 EP - 347 AN - OPUS4-27757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Radlinska, A. A1 - Nmai, C. A1 - Buregyeya, A. A1 - Lai, W.L. A1 - Kou, S. ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Why does Africa need African concrete? An observation of concrete in Europe, America, and Asia - and conclusions for Africa N2 - Portland cement, as we know it today, has its origin in Great Britain approximately 170 years ago. Since then, concrete technology has spread out to Europe, the United States, and Japan, where it became a key component for rapid industrial development. Europe, the Unites States and many Asian countries today have developed a high level of technology regarding concrete construction. However, each of them has a unique history and as a result, different “concrete philosophy” depending upon the social, environmental and financial boundary conditions, as well as their evolution throughout the years and local construction traditions. As a result, the word concrete may refer to rather different materials in America, Europe, and Asia. Apart from South Africa, most sub-Saharan African countries cannot look back on a similarly long cement and concrete history. Cement and concrete are rather new materials and not yet well established. This gives African engineers the unique opportunity to learn from past mistakes and to develop a concrete technology, which refers to the best available practice. However, in many sub-Saharan African countries, standards and regulations are adopted (preferably from Europe or the US) without consideration of the historical background of these standards. Although this practice helps saving resources for the implementation, it does not necessarily yield the best result in the African environment, and also from an economic point of view it might come back disadvantageously due to unnecessary overdesigning. By comparing the differing states-of-the-art in North America, Europe, and Asia, this paper emphasizes, how regional conditions determine the practice of concrete technology in the sub-Saharan area. It is therefore important for Africa to develop a unique African concrete technology, which is perfectly fitted to the specific local conditions, even if it may vary distinctively from the established practice elsewhere. The paper concludes that African nations should effort into adapting existing principles that have proved to function well rather than adopting existing standards. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Cement KW - Casting environment KW - Concrete KW - Durability KW - Standards PY - 2013 SN - 978-3-9815360-3-4 SP - 1139 EP - 1147 AN - OPUS4-27767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Gluth, Gregor A1 - Florea, M.V.A. A1 - Kumaran, G.S. A1 - Akindahunsi, A. A. A1 - Uzoegbo, H.C. A1 - Oslakovic, I.S. ED - Alexander, M. G. ED - Beushausen, H.-D. ED - Dehn, F. ED - Moyo, P. T1 - Concrete knowledge improvement in sub-Saharan Africa T2 - 3rd International conference on concrete repair, rehabilitation and retrofitting III CY - Cape Town, South Africa DA - 2012-09-03 KW - Education KW - Research sub-Sahara KW - Africa KW - Cement KW - Concrete PY - 2012 SN - 978-0-415-89952-9 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. IS - Theme 5 SP - 1459 EP - 1465 PB - CRC Press CY - London, UK AN - OPUS4-26508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Mota Gassó, Berta A1 - Sturm, Heinz A1 - Pauli, Jutta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Influence of effects on nano and micro scale on the rheological performance of cement paste, mortar and concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 25. Workshop und Kolloquium Rheologische Messsungen an Baustoffen CY - Regensburg, Germany DA - 02.03.2016 KW - Rheology KW - Cement KW - Concrete KW - Superplasticizer KW - Nano scale PY - 2016 SN - 978-3-7345-1313-8 SP - 294 EP - 307 PB - tredition CY - Hamburg AN - OPUS4-36862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Umeche, E. L. A1 - Schmidt, Wolfram A1 - Uzoegbo, H. Ch. ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - A survey and analysis of locally available cements in South Africa N2 - South Africa and recently Nigeria are the only net exporter of cement in Africa, yet cements are imported into the country mainly on the basis of price competitiveness. This poses potential for scatter in the properties of the cements in the South African market as pricing seems to be the only determining factor that affects Portland cements imported. A survey of cements of grade 42.5N in the South African cement market was carried out to identify major players in the industry. The identified cements, which included four locally produced and one imported cement were then analysed for both chemical composition and physical properties in line with the Eurocode EN 196. Tests carried out include loss on ignition, chloride content, sulphate content, specific surface (Blaine), standard consistence, initial setting time, final setting time, soundness and flexural and compressive strength at 2, 7 and 28 days. The testing program was initiated as part of on-going Africa-wide cement testing competency program in partnership with BAM and PTB in Germany. The performance of the identified cements from the different local manufacturers and the imported cement were analysed and are presented in this paper. These results reveal some similarities and differences in the properties. Particularly of interest is the marked difference in the 28 days compressive strength of the cements. This paper shows that there is need for further tests across the cement industry as some of the cements failed to meet certain requirement as set by EN 196. The paper also recommends the use of proficiency testing schemes in the cement industry of the country to ensure the cement laboratories are providing results of high quality and at the same time act as a check to make sure these laboratories are not failing to meet standard requirements. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cement KW - Proficiency testing KW - EN 196 KW - Standards KW - South Africa PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 91 EP - 98 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Rübner, Katrin ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Interactions between waste paper sludge ashes and superplasticizers based on polycarboxylates N2 - In many industrial nations, about two third of the paper demand is covered by recovered paper. A major process step within the treatment of waste paper is the de-inking. It is a floating process yielding paper sludge as a waste product. About 50 % of this residue is used as a fuel. In several cases it is burnt at temperature of about 850 °C and thereafter the accrued ashes are collected in the flue gas filter. During the combustion, kaolinite and calcium oxide generate gehlenite and larnite. Calcite is the main component of waste paper sludge ash (PA).The chemical and mineralogical composition of PA suggests using it as a supplementary cementitious material. In modern construction materials technology, workability aspects gain importance, since for most modern materials the rheology and compaction ability are relevant for the operation at a hardened state. It was observed that PA significantly increases the water demand of powder systems, which can cause serious problems during the casting of mineral binder systems containing PA. It is therefore obvious that binder systems containing PA might demand for the use of superplasticizers. Superplasticizers are polymers with anionic backbone that cause electrostatic and steric repulsion effects upon adsorption on surfaces of particles and hydration phases. In this paper interactions between superplasticizers and waste paper sludge ashes are discussed and analysed. Based on observations of changes in the zeta potential and the dispersion of the particle system, the influence of the charge density of superplasticizers is observed and time dependent effects are demonstrated. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Waste paper sludge KW - Rheology KW - Cement KW - Concrete KW - Polycarboxylate ether PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 181 EP - 186 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Uzoegbo, H. Ch. A1 - Schmidt, Wolfram ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Effect of Cassava Starch on Shrinkage Characteristics of Concrete N2 - The use of starch and its derivatives in concrete as an admixture to modify relevant properties of concrete is on the increase in recent times. It is known to modify the rheology, to affect the hydration kinetics of cement, and influence on initial and final setting time of cement. This paper examines the effect of cassava starch on concrete. shrinkage properties of concrete, with and without starch addition, were studied. Various percentages (0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Shrinkage tests were conducted for duration of up to one year. The result show that concretes with starch additions exhibit lower shrinkage, which is an indication the addition of starch as admixture in concrete improves the ability of the concrete reduce shrinkage problems. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cassava KW - Starch KW - Cement KW - Concrete KW - Shrinkage PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 187 SP - 196 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the superplasticizer-cement hydration interaction by optical spectroscopy N2 - Nowadays, superplasticizers (SPs) are widely used to increase fluidity and reduce water content in concrete; thus, allowing better workability for final applications. The present study will focus on the hydration effect using comb shape polycarboxylates (PCEs), which are known to allow a very low water/cement ratio (w/c of 0.20) or less.Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules.This encouraged us to assess the potential of these methods, and particularly fluorescence, for the investigation of the interactions that occur at the interface between hydrate surfaces of cement particles and PCE at a very early stage of concrete formation and to differentiate between the impact of PCE’s molecular structures on such interactions. T2 - 2nd International Conference on the Chemistry of Construction Materials CY - Munich, Germany DA - 10.10.2016 KW - Cement KW - Dye KW - Superplasticizers KW - Fluorescence PY - 2016 SN - 978-3-936028-96-6 VL - 50 SP - 260 EP - 263 PB - Gesellschaft Deutscher Chemiker e.V. CY - Frankfurth am Main AN - OPUS4-38881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mota Gassó, Berta A1 - Schmidt, Wolfram A1 - Pauli, Jutta A1 - Sturm, Heinz T1 - Influences of hydration effects on the flow phenomena of concrete with admixtures N2 - Today, chemical admixtures like superplasticisers and stabilising agents are extremely important for modern concrete technology. These agents have meanwhile become common practice in concrete technology, but the understanding within the entire system lags far behind their application. The macroscopic rheology of concrete in the presence of superplasticizers strongly depends upon effects on a much smaller scale such as the hydration of the cement, the adsorption of superplasticizers, and the pore solution chemistry. T2 - 2nd International Conference on the Chemistry of Construction Materials CY - München, Germany DA - 10.10.2016 KW - Rheology KW - Cement KW - Superplasticiser PY - 2016 SN - 978-3-936028-96-6 VL - 50 SP - 276 EP - 279 PB - Gesellschaft Deutscher Chemiker e.V. CY - Frankfurt am Main AN - OPUS4-38849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -