TY - CONF A1 - Werner, Steve A1 - Schmidt, Wolfram A1 - Pirskawetz, Stephan A1 - Rogge, Andreas ED - Khayat, Kamal Henry T1 - Fire spalling of self-compacting concrete mixtures with different limestone powder contents N2 - Self-compacting concrete typically contains a higher content of powder materials than normal concrete. Furthermore it is assumed that the use of superplasticizers yields a more homogenous microstructure in the hardened paste. Both aspects generate a very dense microstructure, which can be assumed to cause material behaviour that differs from than normal concrete when it is exposed to elevated temperatures. However, the paste volumes in SCC can vary significantly based on the mixture composition. At a low paste volumes SCC can be very similar to normal concrete at hardened state while it can vary greatly at higher paste volumes. Since the high temperature behaviour of concrete is strongly affected by the different physical behaviour of the paste and the aggregates, it is likely that the high temperature behaviour is consequently strongly affected by the ratio of these mixture components. In the present study different SCC mixtures were observed with similar mechanical properties, but with significantly differing paste to aggregate ratios. Based on observations of the heat evolution at the fire exposed surface and at different depths inside the specimens as well as based on photogrammetric observations of the spalled dimensions, the results indicate that with increasing paste volumes the heat conductivity is reduced and as a result concrete with higher paste to aggregate ratios shows less spalling. T2 - 8th RILEM Symposium on Self-Compacting Concrete CY - Washington, USA DA - 15.05.2016 KW - Spalling KW - High temperature behaviour KW - Fire exposure KW - Mixture composition KW - Photogrammetry PY - 2016 SN - 978-2-35158-157-5 SP - 353 EP - 363 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-36873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Khayat, Kamal Henry T1 - Cusum charts for the control of the slump flow of self-compacting concrete in a steady production process N2 - Control chart systems are commonly used in quality management systems to keep production processes stable. The most efficient control chart systems are cumulated sums (cusum), which look at the deviations from a target value. Cusum charts react more rapidly on systematic changes in processes than other charts such as Shewhart charts, which look at the process values. The cusum method is often applied for compressive strength but it is particularly suitable if counteractions be taken immediately, like in the case of fresh concrete properties. The present study shows that regardless of the manipulation, a steady slump flow can be achieved only by adding supplementary superplasticizer in case of loss of flow and adding stabilising agent (ST) in case of increased flow if the V-mask indicates a systematic change. A reference SCC was artificially manipulated in order to achieve either increased or reduced flowability. Arithmetic mean values and standard deviations were determined experimentally without and after taking counteractions. These parameters were used for case studies of steady SCC productions based on normally distributed random values. For the indication of a systematic change, a standard V-mask was used. The results point out that productions with applied cusum methods were capable of keeping the slump flow deviation from the target in the order of magnitude of about 1% despite drastic manipulations, while productions without applied cusum method deviated up to 14% and more from the target slump flow value. T2 - 8th RILEM Symposium on Self-Compacting Concrete CY - Washington, USA DA - 15.05.2016 KW - Control charts KW - Cusum KW - Quality control KW - Rheology KW - Self-compacting concrete PY - 2016 SN - 978-2-35158-157-5 SP - 283 EP - 294 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-36874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinborn, Gabriele A1 - Gemeinert, Marion A1 - Schmidt, Wolfram T1 - Vergleich verschiedener Messverfahren zur Partikelgrößenanalyse am Beispiel von nanodispersem ZrO2-Pulver N2 - Fünf verschiedene Messverfahren wurden zur Partikelgrößenanalyse von nanodispersen ZrO₂-Pulver verglichen. Mit der Laserstreulichtanalyse, der dynamischen Lichtstreuung (heterodyne DLS und homodyne DLS-PCS), der Sedimentationsanalyse im Zentrifugalfeld und der Ultraschallspektrometrie wurden wässrige ZrO₂-Suspensionen mit verschiedenen Feststoffkonzentrationen hinsichtlich ihrer Partikelgrößenverteilung analysiert. Als Referenz diente die REM-Analyse zur Ermittlung der Primärpartikelgröße (ca. 40 nm). Mit den hier vorgestellten Messverfahren konnten in den entsprechenden Suspensionen nur Sekundärpartikel im Bereich von 105 nm bis 224 nm detektiert werden, die somit auf das Vorhandensein von Aggregaten bzw. harten Agglomeraten hinweisen. T2 - Tagung, Produktgestaltung in der Partikeltechnologie CY - Berlin, Germany DA - 23.04.2015 KW - Agglomeration KW - Nanopulver KW - Partikelgröße KW - Suspension PY - 2016 U6 - https://doi.org/10.1002/cite.201500164 SN - 0009-286 X VL - 88 IS - 7 SP - 984 EP - 994 PB - WILEY-VCH CY - Weinheim AN - OPUS4-36960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Haamkens, Frank A1 - Mechtcherine, V. A1 - Roussel, N. T1 - Flow of fresh concrete through reinforced elements: Experimental validation of the porous analogy numerical method N2 - Numerical simulations of concrete castings are complex and time consuming. In order to decrease simulation time and to simplify simulation procedure, an innovative modelling approach, which treats reinforced sections in a formwork as porous media, was proposed. In the previous studies, this numerical model was proved suitable to simulate casting of model yield-stress fluids through reinforced elements. This article focuses on the experimental validation of the proposed model at the concrete scale. For this purpose, a large-scale laboratory casting of a highly reinforced beam is performed. The casting process is numerically simulated and the numerical results are compared to the experimental measurements. KW - Porous medium KW - Self-compacting concrete KW - Casting KW - CFD simulation KW - Reinforcement PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0008884616301880 U6 - https://doi.org/10.1016/j.cemconres.2016.06.003 SN - 0008-8846 VL - 2016/88 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-37441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Schlegel, Moritz-Caspar A1 - Schmidt, Wolfram A1 - Nguyen, Thi Yen A1 - Meng, Birgit A1 - Emmerling, Franziska T1 - Time-resolved in situ investigation of Portland cement hydration influenced by chemical admixtures N2 - Numerous admixtures are used in the building practice to customize the properties of the cement paste during application. The influences of admixtures on the course of cement hydration and formation of hydrate phases have to be considered. Polycarboxylate ether (PCE) based polymeric superplasticizers (SPs) are known to retard the setting of the cement paste. The extent of the retardation differs depending on the molecular structure of the SP. Additionally, the presence of a stabilizing agent (SA) in the cement paste has a retarding side effect on the setting. The initial cement hydration processes and the detailed mechanisms of the retardation influenced by PCEs, as well as their interactions with particular SAs, are insufficiently understood. Up to now, only the results of phenomenological studies were taken into account to describe this retardation process. A detailed structure analysis monitoring the change of the phase composition during the hydration was never applied. Both SP and SA affect the adsorption of the sulphate ions on the clinker particles, causing changes in the formation of ettringite during the initial hydration, and are therefore a crucial part of the setting process itself. Here, the initial hydration of cement influenced by the interaction of SP and SA was monitored in situ by synchrotron X-ray diffraction. The high time resolution of the measurements allowed a continuous detection of the hydrates formed. The hydration was followed from the starting point of water addition and for couple of hours afterwards. The hydration of the levitated cement pellets containing starch as SA was initialized by adding aqueous solutions of different commercial SPs. Changes in the ettringite formation were detected in comparison to the reference hydration of pure cement. KW - Synchrotron KW - Portland cement Initial hydration KW - Superplasticizer KW - Stabilizer KW - XRD PY - 2016 U6 - https://doi.org/http://dx.doi.org/10.1016/j.conbuildmat.2015.12.097 IS - 106 SP - 18 EP - 26 PB - Elsevier AN - OPUS4-35467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -