TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Rogge, A. ED - Meng, B. T1 - Zum Einfluss des Mischungsentwurfs und des Fließmittels auf temperaturbedingte Veränderungen der Rheologie von SVB T2 - 52. DAfStb-Forschungskolloquium T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 KW - Fließmittel KW - Polycarboxylatether KW - Selbstverdichtender Beton KW - Temperatureffekte KW - Rheologie PY - 2011 SN - 978-3-9814281-0-0 SP - 40 EP - 49 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25194 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Zum Einfluss des Mischungsentwurfs und des Fließmittels auf temperaturbedingte Veränderungen der Rheologie von SVB T2 - 52. DAfStb-Forschungskolloquium, BAM T2 - 52. DAfStb-Forschungskolloquium, BAM CY - Berlin, Germany DA - 2011-11-07 PY - 2011 AN - OPUS4-25129 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marinescu, M.V.A. A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Uzoegbo, H.C. A1 - Stipanovic Oslakovic, I. A1 - Kumaran, G.S. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas T1 - Recent developments and perspectives regarding the standardisation and quality surveillance of cement in the east, central and south african region T2 - 13th ICCC - International congress on the chemistry of cement (Proceedings) N2 - The cement and concrete market in East, Central and Southern Africa is highly fragmented. The concrete industry in this area consists of multiple parties, including producers and suppliers of construction materials, formal and informal contractors, engineers and architects, unions of trades persons and workmen, governmental bodies and formal institutions of research and education. All these institutions mostly do not interact adequately, which makes building with cementitious materials susceptible to damage and failures. Completely opposed to the situation in Europe or North America, cement in Africa is often unaffordable, while manpower is cheap, which results in a questionable economisation of cement. Typically, there is not sufficient awareness of methods to sensibly reducing the cement content in concrete or replace Ordinary Portland Cement by adequate alternative materials. Research activities in this field of technology are often missing completely. Only few countries in the area, such as South Africa, are exempted from these issues. This paper presents the SPIN project, which is a joint project of a consortium of 8 African and 3 European partners within the ACP Science and Technology Programme. The project is funded by the EC and ACP Secretariat is the project body. The main objective of the current project is to strengthen the cement and concrete industry in the East and Central African regions. The project shall generate reasonable solution strategies to implement clean, safe and sustainable cement and concrete technology on the African continent, including general and specific guidelines for sensible application. Furthermore it shall be the kick-off for future projects, research activities and the world-wide expansion of a European-African network. The paper addresses special problems the cement and concrete market in Eastern, Central and Southern African countries has to face. Several options are presented in detail, which shall help overcoming the current situation. Customized solutions for the African market include rational methods for reducing the amount of cement used and the replacement of Ordinary Portland Cement with cheaper alternatives. The use of recycled concrete through a new and economically effective method, as well as the opportunity of using locally available resources is also discussed. T2 - 13th International congress on the chemistry of cement CY - Madrid, Spain DA - 03.07.2011 KW - Africa KW - Clean and safe cement production KW - Scientific network PY - 2011 SN - 978-84-7292-400-0 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1 EP - 6 AN - OPUS4-24041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas A1 - Marinescu, M. A1 - Brouwers, J. A1 - Uzoegbo, H. A1 - Oslakovic, I. A1 - Kumaran, S. T1 - Recent Developments and Perspectives Regarding the Standardisation and Quality Surveillance of Cement in the East, Central and South African Region T2 - XIII ICCC - International Congress on the Chemistry of Cement T2 - XIII ICCC - International Congress on the Chemistry of Cement CY - Madrid, Spain DA - 2011-07-03 PY - 2011 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. AN - OPUS4-24020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, J. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Correlation between setting, heat evolution, and deformations of cementitious binder systems depending on type and amount of superplasticizer T2 - XIII ICCC - International Congress on the Chemistry of Cement T2 - XIII ICCC - International Congress on the Chemistry of Cement CY - Madrid, Spain DA - 2011-07-03 PY - 2011 AN - OPUS4-24019 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Robustness improvement for Concrete at challenging climatic conditions T2 - Vorlesung im Rahmen des Kick-Off Meetings zum SPIN Projekt "Spearhead Network for Innovative, Clean and Safe Cement and Concrete Technologies" T2 - Vorlesung im Rahmen des Kick-Off Meetings zum SPIN Projekt "Spearhead Network for Innovative, Clean and Safe Cement and Concrete Technologies" CY - Kigali, Rwanda DA - 2011-01-18 PY - 2011 AN - OPUS4-23183 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Einfluss der Polymerstruktur von Stabilisierern auf die Rheologie von selbstverdichtendem Beton und Mörtel T2 - 20. Kolloquium und Workshop "Rheologische Messungen an mineralischen Baustoffen" T2 - 20. Kolloquium und Workshop "Rheologische Messungen an mineralischen Baustoffen" CY - Regensburg, Germany DA - 2011-03-01 PY - 2011 AN - OPUS4-23313 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Robustness improvement of early age properties of SCC by optimised adjustment of mixture composition and admixtures T2 - International Workshop on Self-Compacting Concrete T2 - International Workshop on Self-Compacting Concrete CY - Belfast, Northern Ireland DA - 2011-04-19 PY - 2011 AN - OPUS4-23715 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Challenges of the African environmental conditions for concrete mixture composition T2 - Workshop cement and concrete for Africa (Proceedings) N2 - Concrete technology was exposed to a rapid development during the last three decades. For the longest time in its history, concrete was considered as a three component System consisting of aggregates, which are bound by the hardened cement paste consisting of hydrated cement. Traditionally, the only way of adjusting the consistency of concrete was using well adjusted aggregates and grading curves and adding excess water to the concrete, accepting that the latter in return reduces strength and durability. During the last three decades, however, concrete has developed further from a three component System towards an (at least) five component system, since the use of mineral additions and Chemical admixtures has become state of the art. Both components are able to enhance the workability, the compactability, and the density of the microstructure with effects on strength, ductility and durability, while cement can be saved in parallel. Due to reasonable use of admixtures and additions, concrete can be designed to match mechanically high performance specifications. Traditionally, cement paste was considered the weakest component in concrete. Flowever, in modern concrete a good paste composition can yield highest performance, passing the role of the mechanical bottleneck towards the aggregates. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 KW - Cement KW - Concrete KW - Mixture composition KW - Africa KW - Climatic conditions PY - 2011 SN - 978-3-9814281-4-8 SP - 37 EP - 49 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Correlation between setting, heat evolution, and deformations of cementitious binder systems depending on type and amount of superplasticizer T2 - 13th ICCC - International congress on the chemistry of cement (Proceedings) N2 - Today polycarboxylate ether based superplasticizer (PCE) is commonly used in concrete technology when high flow properties and water reduction are specified. The ionic strength of the polymers’ backbones determines the adsorption behaviour of polymers on clinker and early hydration products. The amount of required polymers for specified flow properties and the performance over the time of casting is thus determined by the molecular structure of the superplasticizer. The time depending consumption of polycarboxylate ether polymers strongly affects the reaction of aluminates and sulphate ions as well as the hydration process in general. Hence, the choice of polymers for particular flow properties greatly affects the very early properties of cementitious materials such as setting, heat evolution and autogenous deformations. In order to better understand how PCEs influence the early properties, mixes from cement, limestone filler, viscosity modifying agent and water were varied with a high and a low charge density superplasticizer in differing amounts. Results are presented from measurements with an automatic Vicat device, an isothermal heat flow calorimeter, and shrinkage cones. Tests were conducted at 5, 20, and 30 °C. It is shown that in presence of PCE the final set correlates well with the inflexion point of the heat flow curve, which emphasises the interrelation between C-S-H formation and setting. No such clear correlation can be found for the initial set, which is attributed to the fact that the initial set is rather a rheological than a structural phenomenon, so that other effects overlap with C-S-H formation. The results demonstrate that for a given polymer concentration low charge density polymers yield earlier setting than high charge polymers. However, this influence is overridden by the influence of the total amount of polymers in a cementitious system. Since PCE is typically added according to rheological specifications, and low charge PCE typically requires higher amounts of polymers than high charge PCE for comparable flow performance, low charge PCE retards setting more than high charge PCE. The paper furthermore points out that there is no significant influence of the polymer type or amount on the early deformations. Since type and amount strongly affect the hydration, it is demonstrated that early setting causes higher strain after the final set. It is hence concluded that higher PCE solid contents reduce the risk of early cracks that occur at time of setting, when a solid structure has already been formed but without resistance against cracks yet. T2 - 13th International congress on the chemistry of cement CY - Madrid, Spain DA - 03.07.2011 KW - Polycarboxylate superplasticizer KW - Setting KW - Heat evolution KW - Autogenous deformation KW - Self-compacting concrete KW - Calorimetry PY - 2011 SN - 978-84-7292-400-0 SP - 384 EP - 391 AN - OPUS4-24097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -