TY - JOUR A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Ramirez Caro, Alejandra T1 - The action of aggregates on concrete rheology N2 - Most factors acting on concrete rheology work at an extremely small-scale level. Influencing factors in the millimetre or centimetre area are essentially restricted to sand and aggregates. The latter, however, make up 50 to 70% of the total volume of most concretes – a fact often ignored in research on controlling concrete processing properties. Whereas suitably chosen concrete admixtures and additives can influence rheology in a very targeted manner, sand and aggregates are less suitable for controlling rheology but nonetheless contribute to the rheology of the Overall system. The actions of sand and aggregate can impose themselves upon the actions of admixtures and additives and, in unfavourable circumstances, even render them redundant. For this reason, any results concerning the processability of binding agent systems can only be transferred to concrete with great care. It is important to better understand the action of sand and aggregates in order to be able to harmonise them in such a way that they complement the action of superplasticisers positively, instead of working against them. Savings on costs can also be made by this targeted fine-tuning. KW - Rheology KW - Aggregates KW - Viscosity KW - Yield stress KW - Concrete PY - 2018 VL - 3 SP - 42 EP - 49 PB - ad-media GmbH CY - Cologne AN - OPUS4-47045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Simon, Sebastian A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - C⁠3A passivation with gypsum and hemihydrate monitored by optical spectroscopy N2 - Tricalcium aluminate (C⁠3A) is found with less than 10% wt. of the total composition; however, during hydration, C⁠3A plays an important role in the early hydration of cement in the presence of gypsum as a set retarder. The aim of this investigation is to assess the suitability of optical spectroscopy and a dye-based optical probe to monitor early hydration of C⁠3A in the presence of gypsum and hemihydrate. Optical evaluation was performed using steady-state fluorescence and diffuses reflectance spectroscopy (UV-VisDR). Phase characterization during hydration was done with in-situ X-ray diffraction. UV-VisDR with a cyanine dye probe was used to monitor the formation of metastable phases and was employed together with fluorescence spectroscopy, to follow the Aggregation and disaggregation of the dye during hydration. In conclusion, for the first time, a cyanine dye was identified as a feasible and stable probe to monitor C⁠3A hydration changes in the presence of calcium sulfate. KW - Dye KW - Photoluminescence KW - Fluorescence KW - Reflection spectroscopy KW - Cement KW - Hydration KW - Method development PY - 2020 U6 - https://doi.org/10.1016/j.cemconres.2020.106082 VL - 133 SP - 106082 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Crasselt, Claudia A1 - Artemeva, Elena A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A Spectroscopic Study of the Superplasticizer Effect on Early Cement Hydration N2 - Organic/inorganic mixtures were prepared from ordinary Portland cement (OPC), water (w/c 0.22), a fluorescent dye in aqueous solution (stable at alkaline pH; BAM-I), and two different comb shape polycarboxylates (PCEs), i.e., high charge (PCE-HC) and low charge (PCE-LC), respectively. Rheological and calorimetric measurements were performed prior to optical studies in order to select PCE concentrations. Absorption and fluorescence spectroscopy of the system OPC + BAM-I (CBAM-I) revealed maxima of dye BAM-I located at 645 nm and 663 nm, respectively. In presence of PCE-HC and PCE-LC, these mixtures displayed a small red shift in reflectance and a faster decrease in intensity compared to studies with CBAM-I; however, only slight differences were observed between the different PCEs. With time, all systems exhibited a decrease in intensity of BAM-I in absorption/reflectance and emission. This could be caused by dye adsorption and possibly decomposition when in contact with cement particles or hydration products. T2 - The Sixth International Symposium on Nanotechnology in Construction (NICOM6) CY - Hong Kong, China DA - 02.12.2018 KW - Cement KW - Optical Spectroscopy KW - Dye KW - Hydration PY - 2018 SP - 1 EP - 9 AN - OPUS4-49378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Mota, Berta A1 - Artemeva, E. A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A spectroscopic study of the superplasticizer effect on early cement hydration N2 - Organic/inorganic mixtures were prepared from ordinary Portland cement (OPC), water (w/c 0.22), a fluorescent dye in aqueous solution (stable at alkaline pH; BAM-I), and two different comb shape polycarboxylates (PCEs), i.e., high charge (PCE-HC) and low charge (PCE-LC), respectively. Rheological and calorimetric measurements were performed prior to optical studies in order to select PCE concentrations. Absorption and fluorescence spectroscopy of the system OPC + BAM-I (CBAM-I) revealed maxima of dye BAM-I located at 645 nm and 663 nm, respectively. In presence of PCE-HC and PCE-LC, these mixtures displayed a small red shift in reflectance and a faster decrease in intensity compared to studies with CBAM-I; however, only slight differences were observed between the different PCEs. With time, all systems exhibited a decrease in intensity of BAM-I in absorption/reflectance and emission. This could be caused by dye adsorption and possibly decomposition when in contact with cement particles or hydration products. T2 - 20. Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2018 KW - Optical spectroscopie KW - Cement hydration KW - Dyes PY - 2018 SN - 978-3-00-059950-7 VL - 20 SP - 1 EP - 6 PB - F.A. Finger-Institut für Baustoffkunde CY - Weimar AN - OPUS4-46277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -