TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-476748 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, I. L. A1 - Mbugua, R. A1 - Olonade, K. A. ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Natural rheology modifying admixtures for concrete N2 - The possibility to tailor the rheology of concrete eventually opened up the path to new technologies, where design criteria are no longer limited to the compressive strength. Thus, it can be concluded that the capability to control the rheology of concrete can be considered as catalyst for many of today’s concrete innovations. In the same way rheology modifying admixtures will be key to mastering the challenges of the next decades. In many regions of the Southern hemisphere, the effective use of chemical admixtures would significantly contribute to solve problems induced by the challenging climate, but particularly in Africa there is often a lack of local supply and supply infrastructure. In Africa, concrete admixtures are largely shipped or transported from outside the continent. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is no large variety of products available in the market. Due to the enormous relevance of rheology modifying admixtures, it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing and without enormous transportation distances, since these plants are typically regionally abundantly available, cheap, and they are environmental friendly. The paper presents an overview of various options for rheology modifying admixtures, that can be found in Africa, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - 26. Workshop und Kolloquium "Rheologische Messungen an Baustoffen" CY - Regensburg, Germany DA - 21.02.2017 KW - Concrete KW - Rheology PY - 2017 SN - 978-3-7439-0171-1 SP - 75 EP - 87 PB - tredition GmbH CY - Hamburg AN - OPUS4-40599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -