TY - JOUR A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Ternary mix design of grout material for structural repair using statistical tools N2 - Repair is an indispensable part of the maintenance of structures over their lifetimes. Structural grouting is a widely used remediation technique for concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. A structural grout system should be injectable in narrow spaces and hence include ingredients with finer particles. Ultrafine cements are ideal for these type of demanding grouts due to their superior properties compared to that of the less expensive, but coarser ordinary Portland cement (OPC). Supplementary cementitious materials (SCMs) are often used to replace OPC clinker based binder in order to modify certain properties and to reduce costs. The most commonly used SCMs are fly ash (FA), and ground granulated blast furnace slag (GGBS). For various special applications microsilica (MS), and metakaolin (MK) are also used. Identifying the optimum replacement contents of OPC by SCMs are a challenge during the design of such grouts. The aim of this experimental study is to investigate the effect of the selected SCMs (FA, MS and MK) on the slump flow, time of efflux, viscosity, shrinkage, and compressive and flexural strength of ultrafine cement based grouts with constant water-binder ratio and superplasticizer content. The test program was formulated using Box-Behnken design principles. Maximum percentages of replacement with ultrafine cement was 6% by volume of cement for MS and 16% for FA, and MK. The results suggest that most investigated grouts have the potential to be used for structural applications. The appropriate quadratic models are then formulated through statistical tools and presented as response surfaces. The trends indicate that fly ash improves the rheological properties, whereas microsilica and metakaolin positively affect shrinkage and mechanical properties to some extent. Based on the influence of SCMs and priorities among the properties, Decision Matrix Analysis (DMA) is carried out to select the most suitable ones among the SCMs. The analysis suggests that microsilica and fly ash are more suitable as SCMs than metakaolin without affecting the properties. KW - Grouting KW - Microsilica KW - Fly ash KW - Metakaolin KW - Workability KW - Viscosity KW - Strength KW - Mix design KW - Box-Behnken KW - Decision matrix analysis PY - 2018 DO - https://doi.org/10.1016/j.conbuildmat.2018.08.156 SN - 0950-0618 SN - 1879-0526 VL - 189 SP - 170 EP - 180 PB - Elsevier Ltd. AN - OPUS4-45922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Alexander, Mark A1 - John, Vanderley T1 - Education for sustainable use of cement based materials N2 - Structural design and application have always been linked to the compressive strength of concrete as the main relevant criterion. This was justifiable in the past, where concrete consisted of water, ordinary Portland cement and aggregates, but this concept is no longer relevant for modern and more sustainable cement and concrete. Despite these new developments, existing standards, guidelines and academic curricula have not been much updated and are still used worldwide. There is a need to change this situation by proper education of the users. This overview describes the challenges that arise at a user Level from the higher complexity of modern concrete, and defines needs and requirements for enhanced applicability of sustainable concrete concepts. Furthermore, recommendations are given on how better concrete practice can be communicated to all the involved parties, from civil and design engineers to constructors and site-appliers on the construction site. KW - Cement KW - Concrete KW - Sustainability KW - Environment KW - Carbon footprint KW - Education KW - Climate PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0008884616307189?via%3Dihub DO - https://doi.org/10.1016/j.cemconres.2017.08.009 SN - 0008-8846 SN - 1873-3948 VL - 114 SP - 103 EP - 114 PB - Elsevier AN - OPUS4-47673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -