TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Wang, K. ED - Shah, S.P. ED - Khayat, K. T1 - Casting process improvement by optimization of mixture composition and high range water reducing agent modification N2 - Since its invention in the early 1990’s, self-consolidating concrete has never become well established in the ready-mix sectors worldwide. The reason for this can be mainly found in the fact that the sophisticated compositions are sensitive against changing environments. This lack of robustness can be attributed to the interaction between cement hydration reaction and high range water reducing agent (HRWRA). Understanding the relevant mechanisms that control the initial flow performance as well as the flow retention helps optimizing SCC mixtures that perform either steadily in one specific environment or that perform largely similarly at steadily changing environments. This paper depicts how HRWRAs interact with clinker and hydration phases and discusses the important role of the charge density of a polycarboxylic HRWRA in the way the rheology is affected. Based on rheometric results and observations of the Vicat setting times, it is shown that increasing charge densities of the HRWRA and decreasing water to powder ratios (w/p) reduce the flow retention and have lesser retarding effect on the setting. Based on the discussion, optimization procedures for the mixture composition and the HRWRA modification are suggested to achieve optimized performance for varying environmental situations or highest robustness for specific conditions. T2 - SCC 2013 - 5th North American conference on the design and use of self-consolidating concrete CY - Chicago, IL, USA DA - 12.05.2013 KW - Polycarboxylate KW - Cement hydration KW - Adsorption KW - Mixture composition KW - Environmental conditions PY - 2013 SP - 1 EP - 10 AN - OPUS4-28581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Optimierung der Robustheit von selbstverdichtendem Beton gegenüber Temperatureinflüssen N2 - Selbstverdichtender Beton verhält sich unter Temperatureinfluss anders als Normalbeton, da die Rheologie neben der fortschreitenden Hydratation zusätzlich durch die von der Zeit und dem Hydratationsfortschritt abhängige Adsorption von Fließmitteln beeinflusst wird. Anhand rheometrischer Betonversuche an SVB unterschiedlicher Entwurfskonzepte mit variierter anionischer Ladungsdichte im Fließmittel wird verdeutlicht, dass mehlkornreiche SVB bei niedrigen Temperaturen sehr robust sind, während bei hohen Temperaturen mehlkornärmere Entwürfe zu bevorzugen sind. Darüber hinaus wird gezeigt, wie sich unterschiedliche Fließmittelmodifikationen in bestimmten Temperaturbereichen verhalten. Anhand des Wasser-Feststoff-Verhältnisses und des Adsorptionsverhaltens von Fließmitteln werden die maßgeblichen Prozesse erläutert und Möglichkeiten für die Entwicklung robuster Mischungen für individuelle Temperaturbereiche aufgeführt.-------------------------------------------------------------------------------------------------------------------------------------------------------------- Regarding the temperature dependent performance, self-compacting concrete (SCC) distinguishes from normal concrete, since its rheology does not only depend upon the hydration itself but supplementary upon the adsorption of superplasticizers, which is affected by the time and the hydration progress. Based on rheometric concrete investigations with different SCC mixture compositions and varied anionic charge densities of the superplasticizers, it is shown that SCC, which is rich in powder components, shows robust performance at low temperatures, while compositions with lower powder contents are favourable at high temperatures. Furthermore, the performance of different superplasticizer modifications at different temperature ranges is demonstrated. The relevant processes are explained by means of the water to powder ratio as well as the adsorption behaviour of superplasticizers, and options for the development of robust mixture compositions for individual temperature ranges are itemised. KW - Betontechnologie KW - Hochleistungsbeton KW - Praxis KW - Rheologie KW - Mischungsentwurf KW - Selbstverdichtender Beton KW - Fließmittel KW - Temperatur KW - Frischbetoneigenschaften KW - Robustheit KW - Baustoffe KW - Versuche PY - 2013 U6 - https://doi.org/10.1002/best.201200051 SN - 0005-9900 SN - 1437-1006 VL - 108 IS - 1 SP - 13 EP - 21 PB - Ernst CY - Berlin AN - OPUS4-27699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Influence of environmental temperatures on the performance of polymeric stabilising agent in fresh cementitious materials N2 - Stabilising admixtures are commonly used additives in repair mortars and grouts. Beyond this, such type of admixture is increasingly used in concrete and other cementitious materials. In particular when fresh mortar or concrete properties have to be adjusted reliably, stabilising agents can be beneficially used to improve workability and robustness of the mixture. The mode of operation of these admixtures varies, rather affecting either the liquid phase or the solid particles in the dispersion, both causing strong interactions with the mortar or concrete system, and significant changes in their rheological behaviour. Furthermore, these are strongly affected by the environmental temperature during the casting process. In the paper the effect of temperature on the performance of stabilising agents in cementitious systems is presented and how performance changes affect fresh and hardening mortar or concrete properties. Particular attention is placed on interactions between stabilising agents and superplasticizers. Results are discussed with special focus on self-compacting concrete. KW - Biopolymers KW - Cementitious materials KW - Polycarboxylate ether KW - Rheology KW - Setting KW - Stabilising agent KW - Starch ether KW - Self-compacting concrete KW - Superplasticizer PY - 2011 U6 - https://doi.org/10.4028/www.scientific.net/KEM.466.97 SN - 1013-9826 VL - 466 SP - 97 EP - 104 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-22853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Gluth, Gregor T1 - Knowledge transfer and quality assurance - key factors for the future prospects of building with cement in Africa / Wissentransfer und Qualitätssicherung - Schlüsselfaktoren für die Zukunftsperspektiven der Bauweise mit Zement in Afrika KW - Africa KW - Cement KW - Concrete KW - Proficiency testing KW - Round robin PY - 2012 SN - 0949-0205 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 65 IS - 9 SP - 34 EP - 38 PB - Bauverl. BV CY - Gütersloh AN - OPUS4-26535 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten ED - Alexander, M. G. ED - Beushausen, H.-D. ED - Dehn, F. ED - Moyo, P. T1 - Robustness improvement of fresh concrete and mortar performance for challenging casting environments with focus on sub-Saharan Africa T2 - 3rd International conference on concrete repair, rehabilitation and retrofitting III CY - Cape Town, South Africa DA - 2012-09-03 PY - 2012 SN - 978-0-415-89952-9 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. IS - Theme 4 SP - 1324 EP - 1329 PB - CRC Press CY - London, UK AN - OPUS4-26503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Gluth, Gregor A1 - Florea, M.V.A. A1 - Kumaran, G.S. A1 - Akindahunsi, A. A. A1 - Uzoegbo, H.C. A1 - Oslakovic, I.S. ED - Alexander, M. G. ED - Beushausen, H.-D. ED - Dehn, F. ED - Moyo, P. T1 - Concrete knowledge improvement in sub-Saharan Africa T2 - 3rd International conference on concrete repair, rehabilitation and retrofitting III CY - Cape Town, South Africa DA - 2012-09-03 KW - Education KW - Research sub-Sahara KW - Africa KW - Cement KW - Concrete PY - 2012 SN - 978-0-415-89952-9 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. IS - Theme 5 SP - 1459 EP - 1465 PB - CRC Press CY - London, UK AN - OPUS4-26508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Hirya, N.N.M. A1 - Bjegovic, D. A1 - Uzoegbo, H.C. A1 - Kumaran, S.G. T1 - Cement technology in sub-Saharan Africa-practical and scientific experiences N2 - Sub-Saharan Africa is populated by more than half a billion people, and rapid urbanization is creating challenges in the areas of housing, roads, railways, power supply, dams and water pipelines — aspects of infrastructure that are critical to the well being of the population. This situation indicates that cement and concrete will play a major role in the future construction technology in Africa, despite the fact that it does not have a long-lasting tradition over most of the continent. Although the continent is rich in natural resources for the production of mineral binder systems, many sub-Saharan African countries exhibit challenging boundary conditions, that have to be well understood in order to use cement and concrete technologies in a sustainable and reasonable way. KW - Africa KW - Cement KW - Technology transfer KW - SPIN PY - 2012 SN - 0002-7812 VL - 91 IS - 5 SP - 52 EP - 56 PB - American Ceramic Society CY - Westerville, Ohio AN - OPUS4-26075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - The working mechanism of starch and diutan gum in cementitious and limestone dispersions in presence of polycarboxylate ether superplasticizers N2 - Polysaccharides provide high potential to be used as rheology modifying admixtures in mineral binder systems for the construction industry such as concrete or mortar. Since superplasticizers have become state of technology, today, concrete is more and more adjusted to flowable consistencies. This often goes along with the risk of segregation, which can be effectively avoided by adding stabilising agents supplementary to superplasticizers. Stabilising agents are typically based on polysaccharides such as cellulose, sphingan gum, or starch. Starch clearly distinguishes in its effect on rheology from other polysaccharides, mainly due to the strong influence of amylopectin on the dispersion and stabilisation of particles. Based on rheometric investigations on cementitious and limestone based dispersions with different volumetric water to solid ratios, the mode of operation of modified potato starch is explained in comparison to a sphingan gum. It is shown that the stabilising effect of starch in a coarsely dispersed system is mainly depending upon the water to solid ratio and that above a certain particle volume threshold starch mainly affects the dynamic yield stress of dispersions, while plastic viscosity is affected only to a minor degree. Sphingans operate more independent of the particle volume in a coarsely dispersed system and show significantly higher effect on the plastic viscosity than on the yield stress. In systems incorporating superplasticizers, influences of both stabilising agents on yield stress retreat into the background, while both observed polysaccharides maintain their effect on the plastic viscosity. KW - Cement KW - Limestone KW - Rheology KW - Stabilising agent KW - Coarsely dispersed systems KW - Diutan gum KW - Starch ether PY - 2013 U6 - https://doi.org/10.3933/ApplRheol-23-52903 SN - 1430-6395 SN - 0939-5059 VL - 23 IS - 5 SP - 52903-1 EP - 52903-12 PB - Kerschensteiner CY - Lappersdorf AN - OPUS4-29932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Steve A1 - Schmidt, Wolfram A1 - Pirskawetz, Stephan A1 - Rogge, Andreas ED - Khayat, Kamal Henry T1 - Fire spalling of self-compacting concrete mixtures with different limestone powder contents N2 - Self-compacting concrete typically contains a higher content of powder materials than normal concrete. Furthermore it is assumed that the use of superplasticizers yields a more homogenous microstructure in the hardened paste. Both aspects generate a very dense microstructure, which can be assumed to cause material behaviour that differs from than normal concrete when it is exposed to elevated temperatures. However, the paste volumes in SCC can vary significantly based on the mixture composition. At a low paste volumes SCC can be very similar to normal concrete at hardened state while it can vary greatly at higher paste volumes. Since the high temperature behaviour of concrete is strongly affected by the different physical behaviour of the paste and the aggregates, it is likely that the high temperature behaviour is consequently strongly affected by the ratio of these mixture components. In the present study different SCC mixtures were observed with similar mechanical properties, but with significantly differing paste to aggregate ratios. Based on observations of the heat evolution at the fire exposed surface and at different depths inside the specimens as well as based on photogrammetric observations of the spalled dimensions, the results indicate that with increasing paste volumes the heat conductivity is reduced and as a result concrete with higher paste to aggregate ratios shows less spalling. T2 - 8th RILEM Symposium on Self-Compacting Concrete CY - Washington, USA DA - 15.05.2016 KW - Spalling KW - High temperature behaviour KW - Fire exposure KW - Mixture composition KW - Photogrammetry PY - 2016 SN - 978-2-35158-157-5 SP - 353 EP - 363 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-36873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Khayat, Kamal Henry T1 - Cusum charts for the control of the slump flow of self-compacting concrete in a steady production process N2 - Control chart systems are commonly used in quality management systems to keep production processes stable. The most efficient control chart systems are cumulated sums (cusum), which look at the deviations from a target value. Cusum charts react more rapidly on systematic changes in processes than other charts such as Shewhart charts, which look at the process values. The cusum method is often applied for compressive strength but it is particularly suitable if counteractions be taken immediately, like in the case of fresh concrete properties. The present study shows that regardless of the manipulation, a steady slump flow can be achieved only by adding supplementary superplasticizer in case of loss of flow and adding stabilising agent (ST) in case of increased flow if the V-mask indicates a systematic change. A reference SCC was artificially manipulated in order to achieve either increased or reduced flowability. Arithmetic mean values and standard deviations were determined experimentally without and after taking counteractions. These parameters were used for case studies of steady SCC productions based on normally distributed random values. For the indication of a systematic change, a standard V-mask was used. The results point out that productions with applied cusum methods were capable of keeping the slump flow deviation from the target in the order of magnitude of about 1% despite drastic manipulations, while productions without applied cusum method deviated up to 14% and more from the target slump flow value. T2 - 8th RILEM Symposium on Self-Compacting Concrete CY - Washington, USA DA - 15.05.2016 KW - Control charts KW - Cusum KW - Quality control KW - Rheology KW - Self-compacting concrete PY - 2016 SN - 978-2-35158-157-5 SP - 283 EP - 294 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-36874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -