TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Wang, K. ED - Shah, S.P. ED - Khayat, K. T1 - Casting process improvement by optimization of mixture composition and high range water reducing agent modification N2 - Since its invention in the early 1990’s, self-consolidating concrete has never become well established in the ready-mix sectors worldwide. The reason for this can be mainly found in the fact that the sophisticated compositions are sensitive against changing environments. This lack of robustness can be attributed to the interaction between cement hydration reaction and high range water reducing agent (HRWRA). Understanding the relevant mechanisms that control the initial flow performance as well as the flow retention helps optimizing SCC mixtures that perform either steadily in one specific environment or that perform largely similarly at steadily changing environments. This paper depicts how HRWRAs interact with clinker and hydration phases and discusses the important role of the charge density of a polycarboxylic HRWRA in the way the rheology is affected. Based on rheometric results and observations of the Vicat setting times, it is shown that increasing charge densities of the HRWRA and decreasing water to powder ratios (w/p) reduce the flow retention and have lesser retarding effect on the setting. Based on the discussion, optimization procedures for the mixture composition and the HRWRA modification are suggested to achieve optimized performance for varying environmental situations or highest robustness for specific conditions. T2 - SCC 2013 - 5th North American conference on the design and use of self-consolidating concrete CY - Chicago, IL, USA DA - 12.05.2013 KW - Polycarboxylate KW - Cement hydration KW - Adsorption KW - Mixture composition KW - Environmental conditions PY - 2013 SP - 1 EP - 10 AN - OPUS4-28581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Rogge, A. ED - Meng, B. T1 - Zum Einfluss des Mischungsentwurfs und des Fließmittels auf temperaturbedingte Veränderungen der Rheologie von SVB T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 KW - Fließmittel KW - Polycarboxylatether KW - Selbstverdichtender Beton KW - Temperatureffekte KW - Rheologie PY - 2011 SN - 978-3-9814281-0-0 SP - 40 EP - 49 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25194 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Birgit A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Rogge, A. ED - Meng, B. T1 - Aktuelle Forschungsansätze zur Rheologie von Frischbeton T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 KW - Baustoffe KW - Beton KW - Frischbeton KW - Rheologie PY - 2011 SN - 978-3-9814281-0-0 SP - 33 EP - 39 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25195 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Rogge, A. ED - Meng, B. T1 - Betonpflastersteine mit erweiterten Leistungsmerkmalen T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 PY - 2011 SN - 978-3-9814281-0-0 N1 - Geburtsname von Barthel, Maria: Meinel, M. - Birth name of Barthel, Maria: Meinel, M. SP - 194 EP - 203 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25182 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Rogge, A. ED - Meng, B. T1 - Cement and concrete development in Africa: the role of the SPIN project T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 PY - 2011 SN - 978-3-9814281-0-0 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 339 EP - 344 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Challenges of the African environmental conditions for concrete mixture composition N2 - Concrete technology was exposed to a rapid development during the last three decades. For the longest time in its history, concrete was considered as a three component System consisting of aggregates, which are bound by the hardened cement paste consisting of hydrated cement. Traditionally, the only way of adjusting the consistency of concrete was using well adjusted aggregates and grading curves and adding excess water to the concrete, accepting that the latter in return reduces strength and durability. During the last three decades, however, concrete has developed further from a three component System towards an (at least) five component system, since the use of mineral additions and Chemical admixtures has become state of the art. Both components are able to enhance the workability, the compactability, and the density of the microstructure with effects on strength, ductility and durability, while cement can be saved in parallel. Due to reasonable use of admixtures and additions, concrete can be designed to match mechanically high performance specifications. Traditionally, cement paste was considered the weakest component in concrete. Flowever, in modern concrete a good paste composition can yield highest performance, passing the role of the mechanical bottleneck towards the aggregates. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 KW - Cement KW - Concrete KW - Mixture composition KW - Africa KW - Climatic conditions PY - 2011 SN - 978-3-9814281-4-8 SP - 37 EP - 49 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - The SPIN project N2 - Globally, cement and concrete experts are at the cutting-edge to sustainable, green, healthy but nonetheless high-performance concrete. In the present age, concrete is not yet well established in Africa, which öfters the unique opportunity to build up a cement and concrete market based on the highest available state of technology. As this industry needs high level expertise, a central issue in implementation of skilled technology is cross-linking research institutions and laboratories. It should not be neglected that concrete is a product with comparably low transport ranges, which means that an improved concrete market will mainly support the local economy without exceeding financial drains to the international market, thus fostering the fight against poverty, which is an urgent need in most African countries. The SPIN project highlights recent developments in the field of cement and concrete research with impact on the local and global economy. Challenges, future developments and opportunities for the African construction industry are in the focus. The SPIN project is funded by the European Commission (EC) and supported by the African, Caribbean and Pacific (ACP) Group of States under the project body of the ACP Science and Technology Programme. SPIN is acronym for “Spearhead network for Innovative, Clean and Safe Cement and Concrete Technologies”. The project aims to cross-link experts with industry and policy making bodies, aiming to establish sustainable cement and concrete construction in Africa. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 PY - 2011 SN - 978-3-9814281-4-8 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 5 EP - 9 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Iyuke, S.E. ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - The influence of starches on some properties of concrete N2 - Starches and its derivatives are known to exhibit viscosity modifying characteristics. In an ongoing work, the influence of com and cassava starches on some properties of concrete such as compressive strength, heat of hydration and creep are examined. Various percentages (0.0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Preliminary results of compressive strengths showed that both starches have some positive impact (e.g. there was 5.3 % increase in strength due to a 1 % addition of com starch by weight of cement in comparison to the control while cassava starch of the same percentage gave 4.9 % increase in strength) at certain percentages of starch addition to concrete at 28 days. The creep and hydration results shows the starch additions compares well and in some instance performs better. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Starches KW - Concrete KW - Compressive strength KW - Heat of hydration KW - Creep PY - 2013 SN - 978-3-9815360-3-4 SP - 637 EP - 645 AN - OPUS4-27756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramge, Peter A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Effect of the storage of cement on early properties of cementitious systems N2 - As soon as cement is mixed with water, the hydration reaction starts to set of. The progression of the hydration process is governed by the amount and the availability of water and its possibility to access the unhydrated cement grain surfaces. For a total hydration cement theoretically requires water amounting approximately 0.38 of its own mass. Nevertheless, due to the cement’s highly hygroscopic nature, already the moisture in the ambient air can cause first hydration reactions to set in upon the cement grain surfaces. Such pre-hydration processes have an effect on the cement's properties. Dpending on the specific conditions during the storage the significance of the impact on certain properties can vary. If cement is consumed soon after production and is transported only short distances in a silo wagon to its final destination for immediate use without further stock transfer, the effects are rather negligible. However, if cement is delivered in bags, transported over long distances, shifted serval times and stored for longer time periods until it is finally consumend, these effects can be quite severe. Due to the actual logistical situation with comparably few cement plants, large delivery distances and partially less developed infrastructures, the latter scenario pictures the situation for the most cases in Africa quite well. In order to verify the relevance of the pre-hydation for practical application, a series of tests was conducted at the German Federal Institute for Materials Research and Testing (BAM). The influence of the cement storage on gresh and hardened concrete properties was investigated for different concrete and mortar types. The investigations show that the impact of the storage conditions is more pronounced for specialized concretes with high sophisticated optimized mixture compositions containing admixtures. Nevertheless, the effects also occur for ordinary concrete and should not be ignored. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Cement KW - Storage KW - Ambient conditions KW - Hydration KW - Pre-hydration KW - Atmospheric humidity PY - 2013 SN - 978-3-9815360-3-4 SP - 339 EP - 347 AN - OPUS4-27757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Experiences in an African-European-cooperation project: strengthening research capacity in cement and concrete in Africa N2 - This report is based on a three-year experience as coordinator of the ACP-EU funded SPIN project. The project involved eight African and three European partners. Practical and unforeseeable problems are addressed that occurred during the project implementation and ways how they were successfully solved are reported. The major problems in many African institutions were administrations that are not used to work in multi-national consortia and a lack of institutional support for the African researchers. In Europe a misjudgement of the African boundary conditions as well as inflexible administrations caused problems. Finally the funding scheme did not always allow to easily overcome the high number of unexpected practical problems. A major deficit identified during the project was a general trend in Africa to underestimate the role of research for the development of the continent. Most universities focus on teaching applied sciences, which is without doubt important to cover the market need for qualified staff in the rapidly growing African industries. However, this makes it unattractive for highly qualified performers to conduct research on the continent. Furthermore this leads to the situation that the curricula can only contain second hand knowledge. In order to attract international high level researchers, it is suggested to install multi-national regional excellence research centres that only promote PhD and post-doc research on a level that can cope with highest international excellence. High level research is often perceived as not capable of focusing on immediate actual problems that many African economies have to cope with.. However, it is considered to be very sustainable in terms of autonomy and mastering future challenges. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 PY - 2013 SN - 978-3-9815360-3-4 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1177 EP - 1184 AN - OPUS4-27762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -