TY - JOUR A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Wechselwirkungen zwischen Zusatzmitteln und mineralischen Komponenten in selbstverdichtendem Beton beim Betonieren in unterschiedlichen Temperaturen KW - Self-compacting concrete KW - Admixtures KW - Temperature KW - Rheology KW - Limestone filler KW - Selbstverdichtender Beton KW - Zusatzmittel KW - Temperatur KW - Rheologie KW - Kalksteinmehl PY - 2009 SN - 1439-7706 VL - 2 SP - 32 EP - 38 PB - ad-media-Verl. CY - Köln AN - OPUS4-19412 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kühne, Hans-Carsten A1 - Schmidt, Wolfram A1 - Meng, Birgit T1 - The influence of temperature on self-compacting concrete in presence of superplasticizer and additional admixtures T2 - 5th International RILEM Symposium on Self-Compacting Concrete CY - Ghent, Belgium DA - 2007-09-03 KW - Influence of temperature KW - Self-compacting concrete KW - SCC KW - Superplaticizer KW - Admixtures PY - 2007 SN - 978-2-35158-050-9 VL - 1 SP - 405 EP - 410 CY - Bagneux, France AN - OPUS4-15897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Sonebi, M. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa N2 - Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technologicalspecifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. KW - Rheology KW - Admixtures KW - Concrete KW - Superplasticizers KW - Polycarboxylate ether KW - Viscosity modifying agents PY - 2013 SN - 2224-3224 SN - 2225-0956 VL - 5 SP - 115 EP - 120 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-30948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Rheological optimisation for flowable mixture compositions specified for African boundary conditions N2 - To date concrete technology is not yet well established in sub-Saharan Africa but considering the construction technological challenges of the region, without doubt, concrete will play a major role in future. The social, economic, and geographic boundary conditions distinguish greatly from those that can be found in many other regions of the world, where concrete is considerably well established. Düring the last decades, concrete technology underwent a rapid evolution process, but in most countries, where concrete is already well established, innovations are difficult to be brought into practice, Africa, currently has the opportunity and potential, of directly establishing the best available practice in concrete technology. The conclusion is drawn that self-compacting concrete (SCC) or highly flowable concrete is a reasonable solution for African construction sites. Since on most African construction sites the disadvantageous concreting environment is the most crucial factor for the concrete quality, the outstanding workability properties outweigh any disadvantages of SCC. Based on this consideration, concepts are developed, how to bring about robust SCC cost-efficiently and reliably into practice as pre-mixed dry compound under consideration of local materials such as rice husk ashes, bagasse ashes, natural pozzolans, cassava starch and lignosulphonate. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Mixture composition KW - Rheology KW - Climatic conditions KW - Admixtures KW - Additions PY - 2013 SN - 978-3-9815360-3-4 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 359 EP - 366 AN - OPUS4-27764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Inès A1 - Mbugua, Rose A1 - Adisa Olonade, Kolawole T1 - Promising bio-based rheology modifying agents for concrete N2 - Today, concrete engineers can vary consistencies between very stiff and self-compacting. The possibility to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology of concrete systems can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere, and particularly in Africa, the effective use of chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in Africa it is difficult to use them, due to lacking local supply and supply infrastructure. For Africa, concrete admixtures are largely shipped or transported from Europe, the Arabian Peninsula, or Asia. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is not a large variety of products available in the market. However, bio-based chemicals have been used in construction for ages effectively. Due to the enormous relevance of rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in most countries in Africa. However, alternatives are available, which can be found in many regions. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - Rheologie komplexer Fluide: Theorie, Experiment und Anwendung, DRG/ProcessNet | Gemeinsame Diskussionstagung CY - Berlin, Germany DA - 13.3.2017 KW - Africa KW - Cement KW - Concrete KW - Admixtures KW - Polysaccharides KW - Cassava KW - Starch KW - Triumfetta Pendrata A. Rich KW - Nkui PY - 2016 AN - OPUS4-40979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Potentials for sustainable cement and concrete technologies - Comparison between Africa and Europe N2 - Cement and concrete technologies in Africa provide vast potentials for sustainable future technologies as well as enormous challenges. The main focus of the symposium is to address existing challenges, possible solutions, and future potentials with all participants. This symposium also aims at offering a platform for networking with relevant players in science and industry. T2 - Cement and Concrete Related Issues for the African Market CY - Yaoundé, Cameroon DA - 02.11.2017 KW - Cement KW - Admixtures KW - Rheology KW - Sustainability KW - Environment PY - 2017 AN - OPUS4-43541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Potentials for sustainable cement and concrete technologies - Comparison between Africa and Europe N2 - The fundamental knowledge about cement and concrete has made enormous progress over the last decades, and today it would be possible to find optimised sustainable concrete solutions tailored for every given boundary framework and raw material supply. However, this knowledge barely finds implementation into practice despite the urgent global need to minimise carbon emissions and energy consumption. A major reason is that most concrete developments were historically made in the northern hemisphere, where today over-regulations and stagnating market perspectives slow down innovation drive towards higher sustainability. In most African countries, however, sustainable building is simply an urgent real-life problem. The demand for building is enormous, Standard solutions are not an option, and the pool of innovative local raw materials and concrete concepts is enormous. The paper provides a comprehensive comparison between the boundary frameworks of Europe and Africa, and it is explained why local African solutions shall be given priority over imported solutions. Examples of local African concrete solutions are given, and ideas for a rapid implementation are developed. Most of the potentially useful materials such as agricultural ashes, natural and calcined pozzolans, polysaccharides, etc. have not yet been subject to intensive research to date. Therefore, it is not unlikely to assume that with an open mind for non-Standard solutions, combined with creativity and particularly knowledge and awareness, the next generation of innovative and sustainable concretes will be developed and applied on the African continent. Therefore, the conclusion is that particularly the African continent provides the best starting position to develop better and more sustainable concrete solutions than anywhere else in the world. Hence, Africa can become a global pioneer in green cement and concrete technology with impact to the entire world. N2 - Posljednih desetljeća načinjen je golem napredak u temeljnim znanjima o cementu i betonu. Danas bi bilo moguće naći rješenja za optimalni održivi beton primjeren svakom danom okviru i dobavi sirovina. Međutim, takvo znanje jedva da se primjenjuje u praksi unatoč hitnoj globalnoj potrebi smanjenja na najmanju mjeru emisija ugljika i potrošnje energije. Glavni je razlog što je većina razvoja u području betona tijekom povijesti načinjena u sjevernoj hemisferi gdje danas preregulacija i perspektiva stagnirajućeg tržišta usporavaju inovacije ka većoj održivosti. Međutim, u većini afričkih zemalja održiva gradnja jednostavno je hitni problem svakodnevice. Zahtjevi za gradnjom su golemi, obična rješenja nisu opcija, rezerve inovativnih lokalnih sirovina i mogućnosti primjene betona su golemi. U radu se daje sveobuhvatna usporedba graničnih okosnica Europe i Afrike, a objašnjeno je zašto se lokalnim afričkim rješenjima mora dati prioritet pred uvezenim rješenjima. Većina potencijalno korisnih materijala kao što su pepeli iz poljoprivrede, prirodni i kalcinirani pucolani, polisaharidi itd. do danas nisu bili predmetom intenzivnih istraživanja. Stoga nije nevjerojatno pretpostaviti da će se Nova generacija inovativnih i održivih betona razviti i primijeniti na afričkom kontinentu uz otvorenost prema nestandardnim rješenjima i u kombinaciji s kreativnošću i posebno znanjem i sviješću. Stoga je zaključeno da naročito afrički kontinent osigurava najbolju početnu poziciju za razvoj boljih i održivijih betona nego bilo gdje u svijetu. Prema tome Afrika može postati svjetski pionir u tehnologiji zelenoga cementa i betona s utjecajem na cijeli svijet. T2 - 1st International Conference on Construction Materials for a Sustainable Future CY - Zadar, Croatia DA - 19.4.2017 KW - Africa KW - Sustainability KW - Cement KW - Concrete KW - Admixtures KW - Carbon emissions PY - 2017 SN - 978-953-8168-04-8 SP - 829 EP - 835 CY - Zagreb, Croatia AN - OPUS4-40977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Rogge, Andreas A1 - Kühne, Hans-Carsten ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Optimising available resources for production of good concrete properties N2 - There is a wide range of research worldwide on supplementary cementitious materials (SCMs) such as fly ash and slag for substituting pure cement. Such materials are suitable to be considered in a cementitious system with ordinary Portland cement (OPC) due to their high pozzolanic properties. In addition, majority of the SCMs are said to significantly improve concrete properties especially in terms of increased strength and durability. Unfortunately, the production of such SCMs is not entirely eco-friendly and also limited to certain parts of the world, hence one has to look at alternative options. The issue of availability of resources is a strong concept that is ever-increasing, and the use of more eco-friendly SCMs in a cementitious system is furthermore attractive. Hence this paper addresses the use of eco-friendly SCMs in concrete such as rice husk ash (RHA). Despite the fact that extensive research has been done on this material, its application in a cementitious system to obtain sufficient concrete properties is still rather limited. In a country like Tanzania, high strength concrete construction is applicable in special construction cases but certainly not a high priority. Majority of construction is still undertaken using normal strength concrete. In a ternary cementitious system consisting of OPC, RHA and other readily available resources such as limestone filler (LSF), normal strength concrete can still be produced having good performance and suitable for regular on-site construction. This paper explains a possible application of obtaining sufficient concrete properties from the available resources. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Sub-Saharan Africa KW - Rice husk ash KW - Admixtures KW - Workability KW - Rheology PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 323 EP - 331 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Influence of nano scale effects on the macroscopic rheology N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Based on the observations of the nano scale effects, it seems that higher sensitivity against variations in the constituents, the handling, or the boundary condition are the inevitable price for higher performances. However, eventually a very effective method is introduced that helps to maintain stable processes regardless of the root cause for performance changes based on an efficient in-situ process control scheme and superplasticizer and stabilising agents as counter actions. T2 - International Workshop on Nano-Engineered Meta-materials for Civil Infrastructures CY - Jinan, China DA - 20.5.2017 KW - Rheology KW - Meta materials KW - Nano engineering KW - Admixtures KW - Cement KW - Ettringite PY - 2017 AN - OPUS4-41032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Grünewald, S. A1 - Ferrara, L. A1 - Dehn, F. T1 - Design of concrete for high flowability: progress report of fib task group 4.3 N2 - Flowable concretes can differ significantly from traditional vibrated concrete. Concrete types like self-compacting concrete (SCC), ultra high performance concrete (UHPC) and high performance fibre reinforced cementitious composites (HPFRCCs) require novel mix design approaches. This has consequences for the production and the performance in the hardened state. Mix designs for flowable concretes can incorporate a wide variety of innovative admixtures or components: e.g. superplasticisers increase the flowability and allow for significant reduction of the water content, shrinkage compensating admixtures or superabsorbent polymers support sound and damage free curing processes, viscosity modifying admixtures enhance the robustness, and new fibre types allow for sophisticated and tailored structural performance. The new Model Code has limitations regarding the application of flowable concrete, e.g. thresholds for the minimum aggregate size and the maximum strength. Provisions are added to include fibres for structural design. fib Task Group 4.3 aims at facilitating the use of innovative flowable materials for designing concrete structures and considers three aspects of flowable concrete: material properties, production effects and structural boundary conditions and performance. This paper reports about the progress of fib TG 4.3 related to the mix design of flowable concrete and discusses the present state-of-the-art concerning admixtures and robustness. T2 - fib Symposium (Proceedings) - Concrete - Innovation and design CY - Copenhagen, Denmark DA - 18.05.2015 KW - Admixtures KW - Fib model code KW - Fibres KW - Flowable concrete KW - Mix design KW - Robustness PY - 2015 SP - 1 EP - 10 AN - OPUS4-33800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -