TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Inès A1 - Mbugua, Rose A1 - Adisa Olonade, Kolawole T1 - Promising bio-based rheology modifying agents for concrete N2 - Today, concrete engineers can vary consistencies between very stiff and self-compacting. The possibility to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology of concrete systems can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere, and particularly in Africa, the effective use of chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in Africa it is difficult to use them, due to lacking local supply and supply infrastructure. For Africa, concrete admixtures are largely shipped or transported from Europe, the Arabian Peninsula, or Asia. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is not a large variety of products available in the market. However, bio-based chemicals have been used in construction for ages effectively. Due to the enormous relevance of rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in most countries in Africa. However, alternatives are available, which can be found in many regions. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - Rheologie komplexer Fluide: Theorie, Experiment und Anwendung, DRG/ProcessNet | Gemeinsame Diskussionstagung CY - Berlin, Germany DA - 13.3.2017 KW - Africa KW - Cement KW - Concrete KW - Admixtures KW - Polysaccharides KW - Cassava KW - Starch KW - Triumfetta Pendrata A. Rich KW - Nkui PY - 2016 AN - OPUS4-40979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Potentials for sustainable cement and concrete technologies - Comparison between Africa and Europe N2 - Cement and concrete technologies in Africa provide vast potentials for sustainable future technologies as well as enormous challenges. The main focus of the symposium is to address existing challenges, possible solutions, and future potentials with all participants. This symposium also aims at offering a platform for networking with relevant players in science and industry. T2 - Cement and Concrete Related Issues for the African Market CY - Yaoundé, Cameroon DA - 02.11.2017 KW - Cement KW - Admixtures KW - Rheology KW - Sustainability KW - Environment PY - 2017 AN - OPUS4-43541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Influence of nano scale effects on the macroscopic rheology N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Based on the observations of the nano scale effects, it seems that higher sensitivity against variations in the constituents, the handling, or the boundary condition are the inevitable price for higher performances. However, eventually a very effective method is introduced that helps to maintain stable processes regardless of the root cause for performance changes based on an efficient in-situ process control scheme and superplasticizer and stabilising agents as counter actions. T2 - International Workshop on Nano-Engineered Meta-materials for Civil Infrastructures CY - Jinan, China DA - 20.5.2017 KW - Rheology KW - Meta materials KW - Nano engineering KW - Admixtures KW - Cement KW - Ettringite PY - 2017 AN - OPUS4-41032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -