TY - CONF A1 - Schmidt, Wolfram A1 - Olonade, K. A. A1 - Mbugua, R. N. A1 - Lenz, F. J. A1 - Tchetgnia Ngassam, I. T1 - Bio-Based Rheology Modifiers for High Performance Concrete – Possible Modes of Actions and Case Study for Cassava Starch in West Africa T2 - 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete N2 - Polymers that help tailoring rheological properties during the casting process have become inevitable constituents for all kinds of high-performance concrete technologies. Due to lacking industries, these typically crude-oil based admixtures are not readily available in many parts of the world, which limits the implementation of more sustainable high-performance construction technologies in these regions. Alternative polymers, which often demand for less processing, can be derived from local plant-based resources. The paper provides experimental data of flow tests of cement pastes with polysaccharides from Triumfetta pendrata A. Rich, acacia gum and cassava without and in the presence of polycarboxylate ether superplasticizer. The flow tests are amended by observations of the zeta potentials and the hydrodynamic diameters in the presence of and without calcium ions in the dispersion medium. The results show that in the presence of and without calcium ions all polysaccharides provide negative zeta potentials, yet, they affect flowability and thixotropy in different ways. Cassava starch, acacia gum, and the gum of Triumfetta pendrata A. Rich qualified well for robustness improvement, strong stiffening, and additive manufacturing, respectively. The reason for the different effects can be found in their average sizes and size distribution. Due to the promising results, a flow chart for local value chains is derived on the example of yet unused cassava wastes, which can be converted in parallel. T2 - 3rd International Conference on the Application of Superabsorbent Polymers CY - Skukuza, South Africa KW - Admixtures KW - Polysaccharides KW - Rheology KW - Thixotropy KW - Concrete PY - 2020 SN - 978-3-030-33341-6 SN - 978-3-030-33342-3 DO - https://doi.org/10.1007/978-3-030-33342-3_17 SP - 158 EP - 166 PB - Springer AN - OPUS4-58404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Leinitz, Sarah ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - N., Khachani ED - Saadi, M ED - Aride, J. ED - Nounah, A. T1 - Concrete casting robustness improvement due to active rheology T2 - MATEC Web of Conferences N2 - With ongoing innovation in process technology, the challenges of concrete technology are more and more focused on the rheological optimisation for these processes, since improper mixture stability or poor compaction ability negatively affect the concrete homogeneity and quality. However, along with the increasing complexity of today’s concrete mixture compositions, concrete becomes more prone to failure regarding the casting process. Variable properties of the raw materials typically cause changing workability. The reasons can be found among others in scattering water contents, physical or chemical properties of the cement or varying environmental temperatures. Robustness in the delicately adjusted rheology, however, is of utmost importance for modern and future process technology, from sprayed concrete over pumpable concrete towards 3D-printing, with regard to the long-term strength, the function and the durability. Typically, material induced changes cannot be identified easily due to the complex interactions of concrete constituents. Therefore, a precise and prompt counteraction is impossible. However, it is known that the yield stress can be controlled by addition of supplementary superplasticizer or stabilising agent. In combination with computerized process observation tools that can rapidly interpret and react on changes in the rheology, it is therefore thinkable, that only these two admixture types can adjust the rheology steadily and permanently, regardless of the actual root cause for observed macroscopic rheology change. The presentation will firstly give a comprehensive overview of effects at the interface between pore solution, particles and hydrates, which affect the rheology of fresh concrete. Secondly, ways are recommended how the rheology can be actively manipulated before eventually computerized methods are demonstrated that help to actively and rapidly assess and counteract performance scatter during steady casting processes. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Cusum KW - Rheology KW - Control Chart KW - Concrete KW - Robustness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444317 DO - https://doi.org/10.1051/matecconf/201814901001 SN - 2261-236X VL - 149 SP - 01001-1 EP - 01001-7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -