TY - CONF A1 - Kruschwitz, Sabine A1 - Lorenzoni, Renata A1 - Telong, Melissa A1 - Lauinger, Robert A1 - Munsch, Sarah A1 - Schmidt, Wolfram T1 - Investigation of the hydration of clinker-reduced cementitious binders by 1H NMR N2 - In this paper, we demonstrate the value of 1H NMR relaxometry for studying the hydration of clinker-reduced, more climate-friendly cementitious binders. The results were obtained on typical CEM I cements and sister samples containing two different reactive agricultural ashes as well as non-reactive biochars as supplementary cementitious materials. The findings prove that time-resolved NMR measurements provide valuable additional information when combined with classical heat flow calorimetry. T2 - International Conference on Electromagnetic Wave Interaction with Water and Moist Substances of the International Society for Electromagnetic Aquametry (ISEMA) 2023 CY - Brisbane, Ausralia DA - 25.09.2023 KW - Carbon emission KW - 1H NMR relaxometry KW - Heat flow calorimetry KW - Cement, hydration KW - Clinker reduction PY - 2023 SP - 1 EP - 3 AN - OPUS4-58936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Rübner, Katrin ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Interactions between waste paper sludge ashes and superplasticizers based on polycarboxylates N2 - In many industrial nations, about two third of the paper demand is covered by recovered paper. A major process step within the treatment of waste paper is the de-inking. It is a floating process yielding paper sludge as a waste product. About 50 % of this residue is used as a fuel. In several cases it is burnt at temperature of about 850 °C and thereafter the accrued ashes are collected in the flue gas filter. During the combustion, kaolinite and calcium oxide generate gehlenite and larnite. Calcite is the main component of waste paper sludge ash (PA).The chemical and mineralogical composition of PA suggests using it as a supplementary cementitious material. In modern construction materials technology, workability aspects gain importance, since for most modern materials the rheology and compaction ability are relevant for the operation at a hardened state. It was observed that PA significantly increases the water demand of powder systems, which can cause serious problems during the casting of mineral binder systems containing PA. It is therefore obvious that binder systems containing PA might demand for the use of superplasticizers. Superplasticizers are polymers with anionic backbone that cause electrostatic and steric repulsion effects upon adsorption on surfaces of particles and hydration phases. In this paper interactions between superplasticizers and waste paper sludge ashes are discussed and analysed. Based on observations of changes in the zeta potential and the dispersion of the particle system, the influence of the charge density of superplasticizers is observed and time dependent effects are demonstrated. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Waste paper sludge KW - Rheology KW - Cement KW - Concrete KW - Polycarboxylate ether PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 181 EP - 186 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions between PCE and different polysaccharides and influences on the early hydration of cement N2 - ln order to observe the influence of stabilising agents (STA) based on starch and diutan gum, rheometric experiments and setting tests were conducted on cement pastes with and without PCE superpiasticizers. The results show that with regard to yield stress both STAs show differing behaviours in Systems without PCE. In presence of PCE, yield stress infiuences of the STAs retreat into the background. The Vicat results exhibit that STAs can reduce the retard ing effect of PCE. T2 - 1st International conference on the chemistry of construction materials CY - Berlin, Germany DA - 07.10.2013 PY - 2013 SN - 978-3-936028-75-1 N1 - Serientitel: GDCh-Monographien – Series title: GDCh-Monographien VL - 46 SP - 49 EP - 52 AN - OPUS4-30045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Weba, Luciana A1 - Silbernagl, Dorothee A1 - Mota Gassó, Berta A1 - Höhne, Patrick A1 - Sturm, Heinz A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Steinborn, Gabriele ED - Khayat, Kamal Henry T1 - Influences of nano effects on the flow phenomena of self-compacting concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as selfcompacting concrete. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 8th International RILEM Symposium on Self-Compacting Concrete CY - Washington, D.C., USA DA - 15.05.2016 KW - Adsorption KW - Analytics KW - Hydration KW - Polycarboxylate ether KW - Rheology PY - 2016 SP - 245 EP - 254 AN - OPUS4-36882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Weimann, Christiane A1 - Chaves Weba, Luciana ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Influences of hydration effects on the flow phenomena of concrete with admixtures N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cement hydration KW - Polymer adsorption KW - Rheology KW - Superplasticizer KW - Self-compacting concrete PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 79 EP - 88 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mota Gassó, Berta A1 - Schmidt, Wolfram A1 - Pauli, Jutta A1 - Sturm, Heinz T1 - Influences of hydration effects on the flow phenomena of concrete with admixtures N2 - Today, chemical admixtures like superplasticisers and stabilising agents are extremely important for modern concrete technology. These agents have meanwhile become common practice in concrete technology, but the understanding within the entire system lags far behind their application. The macroscopic rheology of concrete in the presence of superplasticizers strongly depends upon effects on a much smaller scale such as the hydration of the cement, the adsorption of superplasticizers, and the pore solution chemistry. T2 - 2nd International Conference on the Chemistry of Construction Materials CY - München, Germany DA - 10.10.2016 KW - Rheology KW - Cement KW - Superplasticiser PY - 2016 SN - 978-3-936028-96-6 VL - 50 SP - 276 EP - 279 PB - Gesellschaft Deutscher Chemiker e.V. CY - Frankfurt am Main AN - OPUS4-38849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonebi, M. A1 - Khatib, J. A1 - Schmidt, Wolfram ED - Diouri, A. ED - Khachani, N. ED - Alami Talbi, M. ED - Ait Brahim, L. ED - Bahi, L. T1 - Influence of the type of viscosity-modifying admixtures and metakaolin on the rheology of grouts N2 - The Viscosity-modifying admixtures (VMAs) contribute to the control of the rheology of grouts and are used to enhance plastic viscosity, cohesion, stability, and resistance to bleeding of cement-based systems. This paper reports the results of an investigation on the effect of type of VMAs, namely two types of diutan gums and a welan gum and metakaolin (MTK), plus a superplasticiser, on the rheology behaviour of cement grouts. All mixes were made with polycarboxylic superplasticiser at 0.6% and 0.9%. The dosages of VMAs were 0.05%, and 0.10%, with a fixed water-to-binder ratio of 0.40. The investigated fresh properties of the grouts included the mini-slump flow, plate cohesion, and rheology parameters: namely yield value and plastic viscosity. The rheological parameters were obtained using a vane viscometer. Control grouts (with and without superplasticiser and VMA) were also tested and compared to mixes containing VMAs. The results indicated that the incorporation of MTK reduced the fluidity and increased the plate cohesion and yield stress, and plastic viscosity due to the higher surface area of MTK. The diutan gum grouts improved the grout fresh properties and rheology compared to the welan gum grouts. T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions CY - Rabat, Morocco DA - 27.11.2013 KW - Viscosity modifying agent KW - Metakaolin KW - Diutan gum KW - Welan gum KW - Rheology PY - 2013 SN - 978-9954-32-689-3 SP - 1 EP - 6 AN - OPUS4-30041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Influence of the processing temperature and combined admixtures on the properties of Self-Compacting Concrete T2 - 7th International PhD Symposium in Civil Engineering CY - Stuttgart, Germany DA - 2008-09-11 PY - 2008 IS - Kap. 16.8 SP - 75 EP - 84 AN - OPUS4-17948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, K. A1 - Schmidt, Wolfram A1 - Mezhov, Alexander T1 - Influence of the hydroxypropylation of starch on its performance as viscosity modifying agent N2 - Synopsis: Starch is a commonly used viscosity modifying agent (VMA). The performance of starch as VMA depends on its origin (e.g. potato, corn, cassava, etc.) and corresponding molecular properties, such as molecular weight, ratio between amylose and amylopectin etc. Depending upon the application, the efficiency of starch can be enhanced by hydroxypropylation. The maximum degree of substitution (DoS) cannot be greater than 3.0, which is the number of hydroxy groups per glucose monomer in the polymer. In the current research three potato starches exhibiting the DoS of 0.4, 0.6 and 0.8 were utilised. The influence of the modified starch on the rheological properties and hydration of cement paste, as well as the viscosity of the pore solution were investigated. Our findings show that the starch with the highest DoS increases the dynamic yield stress the most, while the plastic viscosity is less dependent on the DoS. Additionally, starch with the highest DoS retards hydration to lower degree than other starches. T2 - 13th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Milan, Italy DA - 10.07.2022 KW - Potato starch KW - Rheological KW - Cement hydration KW - Pore solutions PY - 2022 DO - https://doi.org/10.14359/51736074 VL - 354 SP - 209 EP - 218 PB - ACI Special Publications AN - OPUS4-58320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Priebe, Nsesheye Susan T1 - Influence of stabilising agents on limestone filler and cement pastes N2 - The paper showed that the STA behave completely different in pastes with LSF and cement, respectively, as well as with or without PCE. While STA can affect plastic viscosity and yield stress in LSF and cement pastes, the addition of PCE causes that the STA have mainly an impact on plastic viscosity, except DGUM and ST-low. The performance of STA in LSF and cementitious systems can vary greatly due to different ionic strengths of the liquid phase. The charges due to modification of the starches have an intense influence on the rheological properties in pastes. The combined use of PCE and STA can lead to a significant increase of the plastic viscosity without a strong effect to the yield stress. For the evaluation of the effectivity of STA the ionic strength of the liquid phase and the solid volume fraction of the binder have to be taken into account. Further influences can arise from grain size and aggregate content as well as the temperature, which were not discussed in this paper. T2 - 3rd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Johannesburg, South Africa DA - 26.06.2017 KW - Stabilising agent KW - Limestone filler KW - Cement PY - 2017 SN - 978-3-9818270-7-1 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 3 SP - 143 EP - 146 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz ED - M. Tyrer, ED - E. Ganjian, ED - West, A. T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. The hydration is retarded and the timing of formation and the morphology of hydrates is affected. This short paper presents experimental results about the influence of delayed Addition time of PCE SPs on hydration of cement and tricalcium aluminate (C3A) pastes, investigated by isothermal heat flow calorimetry. For cement pastes the hydration is retarded with SP, whereby the high charge PCE has a stronger retarding effect than the low charge PCE. With delayed PCE addition the cement shows a less retarded setting than with simultaneous addition. The alteration caused by PCE is much more pronounced for C3A and gypsum mixes than for cement. If the SP is added simultaneous, the exothermic peak of C3A is retarded. However, with delayed addition of SP the hydration is shortened, the gypsum depletion is fastened and the exothermic peak occurs less retarded or even accelerated compared to simultaneous addition. It is obvious that for C3A pastes there is less retardation the later the Addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. The rate of reaction in the second stage is lower, discernible in decreased slopes and broader peaks. Besides this, a distinct ramp in the C3A heat flow curves within the first stage of C3A hydration occurs for all pastes with delayed addition of SP, which suggests an accelerated ettringite formation. T2 - 38th Cement and Concrete Science Conference CY - Coventry, UK DA - 10.09.2018 KW - Cement hydration KW - Polycarboxylate ether KW - C3A hydration PY - 2018 SN - 978-1-84600-088-1 SP - 64 EP - 67 CY - Coventry, UK AN - OPUS4-45995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of Rheology Modifying Admixtures on Hydration of Cementitious Suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. The hydration is retarded and the timing of formation and the morphology of hydrates is affected. This short paper presents experimental results about the influence of delayed addition time of PCE SPs on hydration of cement and alite pastes, investigated by isothermal heat flow calorimetry. For cement as well as for alite pastes the hydration is retarded with SP, whereby the high charge PCE has a stronger retarding effect than the low charge PCE. The retardation caused by PCE is much more pronounced for alite than for cement mixes. If PCE is added later to the mix, the induction period is shortened and the hydration is accelerated compared to simultaneous addition. This applies for cement and alite pastes. With delayed PCE addition the alite shows a clearly less retarded setting and main hydration than after simultaneous addition. It is obvious that for alite pastes there is less retardation the later the addition of SP. T2 - 6th International Symposium on Nanotechnology in Construction CY - Hong Kong, China DA - 02.12.2018 KW - Polycarboxylate ether (PCE) KW - Early hydration KW - Cement PY - 2018 SP - 1 EP - 8 AN - OPUS4-47204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this paper presents experimental results about the influence of delayed addition of PCEs on the Hydration of cement and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3A pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less Retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 SP - 1 EP - 8 AN - OPUS4-49104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Mota Gassó, Berta A1 - Sturm, Heinz A1 - Pauli, Jutta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Influence of effects on nano and micro scale on the rheological performance of cement paste, mortar and concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 25. Workshop und Kolloquium Rheologische Messsungen an Baustoffen CY - Regensburg, Germany DA - 02.03.2016 KW - Rheology KW - Cement KW - Concrete KW - Superplasticizer KW - Nano scale PY - 2016 SN - 978-3-7345-1313-8 SP - 294 EP - 307 PB - tredition CY - Hamburg AN - OPUS4-36862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Future civil engineering challenges - Skill requirements, new professional profiles and implementation N2 - Urbanisation, habitat, environment, infrastructure and sustainability are major global challenges of the 21st century. By planning, exploiting of resources, building, and maintaining, civil engineers and relevant adjacent disciplines have been carrying a large responsibility for the existing environmental problems. Civil engineers are responsible for 70% of all material uses in the world, and civil construction has been dominating the growth of the developing world for the next decades, with enormous impact on the global climate as well as the distribution of wealth and quality of living in the world. Today a variety of sustainable construction concepts have been developed and discussed. Recently a UNEP report was published, which provides a comprehensive overview of the challenges and potentials in the future from a scientific and industrial point of view. Sustainable solutions based on abundantly available resources (pozzolana and clay) or on renewable instead of limited industrial by-products (e.g. agricultural waste ashes) and new construction echnologies do exist. By applying, promoting and developing the implementation of the existing knowledge into real life constructions, civil engineers also hold the key for the mitigation of the global challenges. Using best practice sustainable construction solutions is particularly of highest importance in the developing world, since the implementation at an early stage creates the highest leverage for positive effects. T2 - 3rd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Johannesburg, South Africa DA - 26.6.2017 KW - Civil Engineering KW - Cement KW - Concrete KW - Global engineering KW - Nano engineered materials KW - Sustainability PY - 2017 SN - 978-3-9818270-7-1 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 3 SP - 9 EP - 14 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Experiences in an African-European-cooperation project: strengthening research capacity in cement and concrete in Africa N2 - This report is based on a three-year experience as coordinator of the ACP-EU funded SPIN project. The project involved eight African and three European partners. Practical and unforeseeable problems are addressed that occurred during the project implementation and ways how they were successfully solved are reported. The major problems in many African institutions were administrations that are not used to work in multi-national consortia and a lack of institutional support for the African researchers. In Europe a misjudgement of the African boundary conditions as well as inflexible administrations caused problems. Finally the funding scheme did not always allow to easily overcome the high number of unexpected practical problems. A major deficit identified during the project was a general trend in Africa to underestimate the role of research for the development of the continent. Most universities focus on teaching applied sciences, which is without doubt important to cover the market need for qualified staff in the rapidly growing African industries. However, this makes it unattractive for highly qualified performers to conduct research on the continent. Furthermore this leads to the situation that the curricula can only contain second hand knowledge. In order to attract international high level researchers, it is suggested to install multi-national regional excellence research centres that only promote PhD and post-doc research on a level that can cope with highest international excellence. High level research is often perceived as not capable of focusing on immediate actual problems that many African economies have to cope with.. However, it is considered to be very sustainable in terms of autonomy and mastering future challenges. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 PY - 2013 SN - 978-3-9815360-3-4 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1177 EP - 1184 AN - OPUS4-27762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Engineering skill requirements to cope with the local and global challenges of the future N2 - In the 21st century, adequate habitat and functioning infrastructure are critical for global societal and economic stability. In addition, growing urbanisation and environmental pollution cause challenges to societies. With increasing velocity, humanity faces that the current way of living is not sustainable. Thus, habitat,infrastructure, urbanisation, environment and sustainability are definitively among the most striking challenges of the 21st century. By consulting, planning, building, maintaining, exploiting and processing of global resources, civil engineers contribute significantly to the existence of these challenges. This is a high responsibility, but due to the heavy involvement, together with adjacent disciplines such as architecture, geosciences, chemistry, physics, environmental sciences and economics, civil engineers also hold the key to mitigate these challenges and provide a brighter global future. Solutions towards greener, more sustainable and economically viable materials do exist, and there is ongoing research on how greener technologies can contribute to better livelihood and economic growth, but their level of implementation is limited, a major reason for which is that these approaches require more fundamental understanding rather than standard application. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Civil Engineering KW - Education KW - Sustainability KW - Materials KW - Sciences PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484895 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 16 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Wolf, Julia A1 - Schmidt, Wolfram A1 - Rogge, Andreas T1 - Einsatzmöglichkeiten der Schallemissionsanalyse im Bauwesen N2 - Die Schallemissionsanalyse (SEA) ist ein passives zerstörungsfreies Prüfverfahren. mit dem Rissbildung, Risswachstum und andere Gefügeveränderungen delektiert und lokalisiert werden können. Anhand von zwei Beispielen aus der Forschung der Bundesanstalt für Materialforschung und -prüfung (BAM) wird gezeigt welche Möglichkeiten die SEA beim Bauwerksmonitoring und bei der Untersuchung von Baustoffen bietet. Im ersten Beispiel wird die Ortung von Schallemissionen zur Verfolgung des Risswachstums in Beton eingesetzt. Weiterhin wird mit Zugversuchen an Faserbeton illustriert, dass mit der SEA Versagensmechanismen identifiziert werden können. T2 - 8. Symposium Experimentelle Untersuchungen von Baukonstruktionen CY - Dresden, Germany DA - 24.09.2015 KW - Schallemission KW - SHCC PY - 2015 SN - 1613-6934 N1 - Serientitel: Schriftenreihe Konstruktiver Ingenieurbau Dresden – Series title: Schriftenreihe Konstruktiver Ingenieurbau Dresden VL - 40 SP - 61 EP - 72 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-34581 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Crasselt, Claudia ED - Ludwig, H.-M. T1 - Einfluss der wässrigen Phase von Zementleim und Polycarboxylatethern auf die Rheologie und die frühe Hydratation von Zement N2 - Die Rheologie von fließfähigen zementären Systemen mit Fließmitteln wird durch eine Vielzahl parallel stattfindender Effekte beeinflusst. Zu diesen Effekten zählen Wechselwirkungen zwischen den Polymeren und Ionen in der Porenlösung, frühe Phasenbildung, zeitabhängige und kompetitive Adsorption zwischen anionischen Polymeren und Sulfationen, Bildung von Phasen in der Porenlösung sowie Morphologieänderungen an Partikeloberflächen. Die frühe Hydratation von Zement, die durch Lösungs- und Fällungsprozesse angetrieben wird, beeinflusst diese Effekte erheblich. Das permanente Ungleichgewicht der Porenlösung führt zu Veränderungen der Partikeloberflächen, welches widerum zur Folge hat, dass rheometrische Messungen dieser Zementleime anfällig für Streuungen sind. Um die Einflüsse aus der Zementhydratation zu minimieren, wurden die rheometrischen Untersuchungen mit Zement in Porenlösung durchgeführt. Die Experimente wurden mit verschiedenen Feststoffvolumenfraktionen durchgeführt und mit den Ergebnissen identischer Systeme mit Wasser anstelle von Porenlösung verglichen. Zusätzlich wurden die gleichen Systeme mit Zugabe von Polycarboxylatethern untersucht. Die Ergebnisse zeigen, dass die Leime mit Wasser niedrigere Werte für Fließgrenze und plastische Viskosität aufweisen, als die Systeme mit Porenlösung. Während die Polymere eine Verminderung der Fließgrenze zur Folge hatte, war die Wirkung von Polymeren auf die plastische Viskosität vernachlässigbar. Zusätzlich wurde die frühe Hydratation unter Verwendung von Wärmeflusskalorimetrie, Rasterelektronenmikroskopie und Nadeleindringtiefe beobachtet. T2 - 20. Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2018 KW - Rheologie KW - Polycarboxylatether KW - Zementleim KW - Fließmittel PY - 2018 SN - 978-3-00-059950-7 VL - 20 SP - 744 EP - 751 PB - F.A. Finger-Institut für Baustoffkunde CY - Weimar AN - OPUS4-45973 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Leinitz, Sarah A1 - Kühne, Hans-Carsten ED - Ludwig, H.-M. T1 - Einfluss der Partikelvolumenfraktion auf die Rheologie und die Effektivität von Polysaccharid-Stabilisierern in Gegenwart von Polycarboxylatether-Fließmitteln N2 - Zur Untersuchung der Wirkungsweise von ST ohne und in Gegenwart von FM wurden Untersuchungen an Zementleimen mit unterschiedlichen Φρ und variierten St-Modifikationen durchgeführt. Folgendes kann zusammengefasst werden: Mit zunehmendem Φρ nimmt der Einfluss aller beobachteten ST auf To und Πpl gegenüber dem wässrigen System ab. Bei hohem Φρ reduzieren alle ST Πpl. Diutan Gum und die hochmodifizierte Stärke können aber ein erhöhtes -r0 bewirken. In Gegenwart von FM werden ST insbesondere bei höheren FM-Dosierungen wirksam mit Bezug auf erhöhtes Πpl. Erhöhtes t0 erzielten nur ST-DG und ST-npg. Setzfließmaßversuche konnten darüber hinaus zeigen, dass Stärken besonders effektiv wirken, wenn der Feststoffgehalt sehr hoch ist, während Diutan Gum eine höhere Wirksamkeit aufweist, wenn höhere Wassergehalte im System sind. Die Wirkungsweise von ST ist sehr stark von p und der Gegenwart von FM abhängig. Die Ergebnisse zeigen. dass für Stärken die Modifikation eine sehr große Rolle spielen kann und dass weitere Untersuchungen zeigen müssen, inwieweit ST auf bestimmte Anwendungen maßgeschneidert werden können. T2 - 19. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 16.09.2015 KW - Fließmittel KW - Stabilisierer KW - Polycarboxylatether KW - Polysaccharide KW - Rheologie PY - 2015 SN - 978-3-00-050225-5 VL - 1 SP - 1-1263 EP - 1-1270 AN - OPUS4-34869 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Einfluss der Fließmittelmodifikation auf die Verarbeitungseigenschaften fließfähiger Betone - Hintergründe und Optimierungspotential T2 - Fachtagung Betonbau aktuell 2014 CY - Apolda, Germany DA - 2014-02-13 PY - 2014 SP - 1 EP - 7(?) AN - OPUS4-30945 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Pirskawetz, Stephan A1 - Kühne, Hans-Carsten ED - Amziane, Sofiane ED - Sonebi, M. ED - Charlet, K. T1 - Efficiency of high performance concrete types incorporating bio-materials like rice husk ashes, cassava starch, lignosulfonate, and sisal fibres N2 - Over the last decades concrete has evolved from a simple mass construction material towards a sophisticated multi-component system. The design parameters for the mixture composition of concrete have significantly increased from strength based towards overall or specific performance based. As a result the variety of concrete has increased yielding a number of special concrete technologies such as Self-Compacting Concrete (SCC), High-Performance Concrete (HPC), Strain Hardening Cement Based Composites (SHCC), and many others. Due to their complex mixture compositions and a multitude of possible interactions between constituents, these concrete types are preferably composed of special components like well-defined powders and sophisticated chemical admixtures. This makes such concrete technology expensive and limits their application to regions with the required material supply chains. The paper puts focus on materials, which are less well studied in conjunction with high performance concrete, but which are available in many developing countries, and in particular sub-Saharan Africa. The paper shows how sec can be designed without polycarboxylate ether superplasticizer and well defined fillers, but with lignosulphonate, cassava starch and rice husk ash. The positive effect of well processed rice husk ashes is demonstrated. Furthermore results are presented of SHCC where typical components like polyvinyl alcohol fibres and fluy ash are replaced by sisal fibres and limestone filler, respectively. The results point out that high performance concrete applications do not have to be limited to a boundary framework with availability of well-defined raw material supply structures and sophisticated admixtures or fibres. Concepts are presented how innovative concrete technologies can be developed based on indigenous materials. T2 - ICBBM 2015 - 1st International conference on bio-based building materials CY - Clermont-Ferrand, France DA - 22.06.2015 KW - Corrosion potential KW - Chloride migration KW - Electrical resistivity KW - Water absorption KW - Freeze-thaw PY - 2015 SN - 978-2-35158-154-4 N1 - Serientitel: Rilem proceedings – Series title: Rilem proceedings N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. IS - PRO 99 SP - 208 EP - 214 AN - OPUS4-33583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Leinitz, Sarah A1 - Kühne, Hans-Carsten ED - Malhotra, V. M. ED - Gupta, P. R. ED - Holland, T. C. T1 - Effects of particle volume fraction and size on polysaccharide stabilizing agents N2 - Polysaccharides modify the rheological properties of cement based systems. Depending upon their chemistry, molecular architecture, and adsorption tendency, they have different modes of action. Some polysaccharides like diutan gum have strong effect on the fluid phase; others like starch strongly interact with particles. This paper presents effects of diutan gum and starches in presence of polycarboxylates. Rheometric investigations with varied particle volume fractions and increasing coarse aggregate diameters were conducted. The results show that starches have stronger influence on the rheology at high particle volume fractions than diutan gum. At lower particle volume fractions this trend is inverted. Experiments with aggregates sizes up to 16 mm (0.63 in.) indicate that stabilizing agent influences on the effects of aggregates on yield stress were small; however up to 1.0 mm (0.04 in.), a significant effect on the plastic viscosity could be observed, which levelled off at larger diameters. T2 - 11th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Ottawa, Canada DA - 12.07.2015 KW - Diutan gum KW - Starch KW - Polysaccharides KW - Polycarboxylate ether KW - Volume fraction PY - 2015 SN - 9781942727224 SP - SP-302-03, 39 EP - 52 AN - OPUS4-36861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasiliou, Eleni A1 - Schmidt, Wolfram A1 - Stefanidou, Maria A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas ED - Amziane, Sofiane ED - Sonebi, Mohammed ED - Charlet, Karine T1 - Effectiveness of starch ethers as rheology modifying admixtures for cement based systems N2 - Polysaccharides are important rheology modifying admixtures in the building material sector. The use of starch is becoming increasingly important, due to many ecological and economic advantages. In the construction sector, starch ethers are being used as thickeners and as means to increase the yield stress. The starch ethers that are available on the market differ in their behaviour, which can vary greatly depending upon the binder system and mortar composition, e.g. solid volume content, binder type, additional admixtures. In view of the limited knowledge about the influence of molecular modifications associated with cement based systems, some fundamental rheological functional mechanisms were analysed in this study. The differently modified starch ethers used were derived from potatoes. They varied in their charges and degrees of hydroxypropylation. The setting and the flow behaviour of all examined variations of starch ethers were analysed in cement pastes. In order to illustrate the effects of the starch ethers that were used, the water-cement ratio (w/c) was held constant in all the mixtures [Schmidt 2012]. The results indicated significant differences in setting and flow behaviour. T2 - Second International RILEM Conference on Bio-based Building Materials CY - Clermont-Ferrand, France DA - 21.06.2017 KW - Rheology KW - Polysaccharides KW - Cement KW - Concrete KW - Starch KW - Polycarboxylate PY - 2017 SN - 978-2-35158-192-6 SP - 81 EP - 85 PB - RILEM S.A.R.L CY - Paris, France AN - OPUS4-43548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramge, Peter A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Effect of the storage of cement on early properties of cementitious systems N2 - As soon as cement is mixed with water, the hydration reaction starts to set of. The progression of the hydration process is governed by the amount and the availability of water and its possibility to access the unhydrated cement grain surfaces. For a total hydration cement theoretically requires water amounting approximately 0.38 of its own mass. Nevertheless, due to the cement’s highly hygroscopic nature, already the moisture in the ambient air can cause first hydration reactions to set in upon the cement grain surfaces. Such pre-hydration processes have an effect on the cement's properties. Dpending on the specific conditions during the storage the significance of the impact on certain properties can vary. If cement is consumed soon after production and is transported only short distances in a silo wagon to its final destination for immediate use without further stock transfer, the effects are rather negligible. However, if cement is delivered in bags, transported over long distances, shifted serval times and stored for longer time periods until it is finally consumend, these effects can be quite severe. Due to the actual logistical situation with comparably few cement plants, large delivery distances and partially less developed infrastructures, the latter scenario pictures the situation for the most cases in Africa quite well. In order to verify the relevance of the pre-hydation for practical application, a series of tests was conducted at the German Federal Institute for Materials Research and Testing (BAM). The influence of the cement storage on gresh and hardened concrete properties was investigated for different concrete and mortar types. The investigations show that the impact of the storage conditions is more pronounced for specialized concretes with high sophisticated optimized mixture compositions containing admixtures. Nevertheless, the effects also occur for ordinary concrete and should not be ignored. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Cement KW - Storage KW - Ambient conditions KW - Hydration KW - Pre-hydration KW - Atmospheric humidity PY - 2013 SN - 978-3-9815360-3-4 SP - 339 EP - 347 AN - OPUS4-27757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Govin, A. A1 - Schmidt, Wolfram A1 - Bartholin, M. C. A1 - Grosseau, P. ED - Amziane, Sofiane ED - Sonebi, M. T1 - Effect of Guar Gum Derivatives Combined with Superplasticizers on Properties of Portland Cement-Pastes N2 - Chemical admixtures allow to the create a variety of fresh and hardened state properties in cementitious materials. In the case of self-compacting concrete, plasticizers or superplasticizers are introduced with the aim to decrease the yield stress and the viscosity of the materials. However, in order to prevent segregation and bleeding, and to improve the water retention of cement-based system, stabilizing agents or viscosity agents are often introduced in addition. Among these admixtures, polysaccharides are most commonly used. The aim of this study is to provide an understanding of competitive or synergetic effects induced by the combination of hydroxypropyl guar stabilizing agents (HPG) and superplasticizers on cement pastes. Two polycarboxylate superplasticizers (PCE) exhibiting different charge densities and one HPG were studied. It was found that the combination of HPG with PCE superplasticizer strongly affects the rheological behavior of cement pastes. Despite the presence of HPG, the viscosity of the pastes strongly decreased with increasing dosage of PCE until it became close to the viscosity of a cement paste with PCE only. However, the use of HPG in combination with PCE allows maintaining a significant yield stress in the cement paste compared to PCE alone. The increase in the charge density of the PCE seemed to amplify the drop of the viscosity and to reduce the gain on the yield stress induced by HPG. The results also highlight a delay in the setting-time of the cement paste by adding HPG and PCE. The delay induced by HPG is significantly lower than that generated by PCEs. However, the combination of the both kind of admixtures leads to a slightly shorter setting-time compared to the PCE alone. T2 - 2nd International Conference on Bio-based Building Materials & 1st Conference on ECOlogical valorisation of GRAnular and FIbrous materials CY - Clermont-Ferrand, France DA - 21.06.2017 KW - Guar gum KW - Polysaccharides KW - Superplasticizer KW - Cement KW - Rheology PY - 2017 VL - PRO 119 SP - 55 EP - 61 PB - RILEM Publications S.A.R.L. CY - Paris AN - OPUS4-41038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Govin, Alexandre A1 - Schmidt, Wolfram A1 - Bartholin, M. C. A1 - Grosseau, P. ED - Amziane, Sofiane ED - Sonebi, Mohammed ED - Charlet, Karine T1 - Effect of Guar gum derivatives combined with superplasticizers on properties of Portland cement pastes N2 - Chemical admixtures allow to create a variety of fresh and hardened state properties in cementitious materials. In the case of self-compacting concrete, plasticizers or superplasticizers are introduced with the aim to decrease the yield stress and the viscosity of the materials. However, in order to prevent segregation and bleeding, and to improve the water retention of cement-based system, stabilizing agents or viscosity agents are often introduced in addition. Among these admixtures, polysaccharides are most commonly used. The aim of this study is to provide an understanding of competitive or synergetic effects induced by the combination of hydroxypropyl guar stabilizing agents (HPG) and superplasticizers on cement pastes. Two polycarboxylate superplasticizers (PCE) exhibiting different charge densities and one HPG were studied. It was found that the combination of HPG with PCE superplasticizer strongly affects the rheological behavior of cement pastes. Despite the presence of HPG, the viscosity of the pastes strongly decreased with increasing dosage of PCE until it became close to the viscosity of a cement paste with PCE only. However, the use of HPG in combination with PCE allows maintaining a significant yield stress in the cement paste compared to PCE alone. The increase in the charge density of the PCE seemed to amplify the drop of the viscosity and to reduce the gain on the yield stress induced by HPG. The results also highlight a delay in the setting-time of the cement paste by adding HPG and PCE. The delay induced by HPG is significantly lower than that generated by PCEs. However, the combination of the both kind of admixtures leads to a slightly shorter setting-time compared to the PCE alone. T2 - Second International RILEM Conference on Bio-based Building Materials, 21-23 June 2017 CY - Clermont-Ferrand, France DA - 21.06.2017 KW - Rheology KW - Cement KW - Guar Gum KW - Polysaccharide KW - Superplasticizer PY - 2017 SN - 978-2-35158-192-6 SP - 55 EP - 61 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-43547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Uzoegbo, H. Ch. A1 - Schmidt, Wolfram ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Effect of Cassava Starch on Shrinkage Characteristics of Concrete N2 - The use of starch and its derivatives in concrete as an admixture to modify relevant properties of concrete is on the increase in recent times. It is known to modify the rheology, to affect the hydration kinetics of cement, and influence on initial and final setting time of cement. This paper examines the effect of cassava starch on concrete. shrinkage properties of concrete, with and without starch addition, were studied. Various percentages (0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Shrinkage tests were conducted for duration of up to one year. The result show that concretes with starch additions exhibit lower shrinkage, which is an indication the addition of starch as admixture in concrete improves the ability of the concrete reduce shrinkage problems. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cassava KW - Starch KW - Cement KW - Concrete KW - Shrinkage PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 187 SP - 196 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Grünewald, S. A1 - Ferrara, L. A1 - Dehn, F. T1 - Design of concrete for high flowability: progress report of fib task group 4.3 N2 - Flowable concretes can differ significantly from traditional vibrated concrete. Concrete types like self-compacting concrete (SCC), ultra high performance concrete (UHPC) and high performance fibre reinforced cementitious composites (HPFRCCs) require novel mix design approaches. This has consequences for the production and the performance in the hardened state. Mix designs for flowable concretes can incorporate a wide variety of innovative admixtures or components: e.g. superplasticisers increase the flowability and allow for significant reduction of the water content, shrinkage compensating admixtures or superabsorbent polymers support sound and damage free curing processes, viscosity modifying admixtures enhance the robustness, and new fibre types allow for sophisticated and tailored structural performance. The new Model Code has limitations regarding the application of flowable concrete, e.g. thresholds for the minimum aggregate size and the maximum strength. Provisions are added to include fibres for structural design. fib Task Group 4.3 aims at facilitating the use of innovative flowable materials for designing concrete structures and considers three aspects of flowable concrete: material properties, production effects and structural boundary conditions and performance. This paper reports about the progress of fib TG 4.3 related to the mix design of flowable concrete and discusses the present state-of-the-art concerning admixtures and robustness. T2 - fib Symposium (Proceedings) - Concrete - Innovation and design CY - Copenhagen, Denmark DA - 18.05.2015 KW - Admixtures KW - Fib model code KW - Fibres KW - Flowable concrete KW - Mix design KW - Robustness PY - 2015 SP - 1 EP - 10 AN - OPUS4-33800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, S. C. A1 - Ebell, Gino A1 - Van Zijl, G. P. A. G. A1 - Schmidt, Wolfram ED - Schlangen, E. ED - Sierra Beltran, M.G. ED - Lukovic, M. ED - Ye, G. T1 - Cracked and uncracked SHCC specimens under different exposure conditions N2 - This paper describes the fibre-reinforced strain hardening cement-based composite (SHCC) performance under various exposure conditions. Cracked and uncracked SHCC beam specimens were subjected to cyclic wetting and drying under chloride exposure to observe the time of depassivation and corrosion potential of the imbedded reinforcement. Two reference mortars, one of the same strength class as the SHCC (Mortar 1) and the other of high strength class (Mortar 2) were used under the same conditions. Finally, tests for determining the rapid chloride migration coefficient, electrical resistivity, capillary water absorption and freezethaw were also performed to observe the corrosion probability and diffusion rate in uncracked SHCC and mortars. T2 - SHCC3 - 3rd International RILEM conference on strain hardening cementitious composites CY - Dordrecht, The Netherlands DA - 03.11.2014 KW - Depassivation KW - SHCC corrosion crack KW - Lochkorrosion KW - Betonstahl PY - 2014 SN - 978-2-35158-150-6 SN - 978-2-35158-151-3 SP - 25 EP - 32 AN - OPUS4-32462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Correlation between setting, heat evolution, and deformations of cementitious binder systems depending on type and amount of superplasticizer N2 - Today polycarboxylate ether based superplasticizer (PCE) is commonly used in concrete technology when high flow properties and water reduction are specified. The ionic strength of the polymers’ backbones determines the adsorption behaviour of polymers on clinker and early hydration products. The amount of required polymers for specified flow properties and the performance over the time of casting is thus determined by the molecular structure of the superplasticizer. The time depending consumption of polycarboxylate ether polymers strongly affects the reaction of aluminates and sulphate ions as well as the hydration process in general. Hence, the choice of polymers for particular flow properties greatly affects the very early properties of cementitious materials such as setting, heat evolution and autogenous deformations. In order to better understand how PCEs influence the early properties, mixes from cement, limestone filler, viscosity modifying agent and water were varied with a high and a low charge density superplasticizer in differing amounts. Results are presented from measurements with an automatic Vicat device, an isothermal heat flow calorimeter, and shrinkage cones. Tests were conducted at 5, 20, and 30 °C. It is shown that in presence of PCE the final set correlates well with the inflexion point of the heat flow curve, which emphasises the interrelation between C-S-H formation and setting. No such clear correlation can be found for the initial set, which is attributed to the fact that the initial set is rather a rheological than a structural phenomenon, so that other effects overlap with C-S-H formation. The results demonstrate that for a given polymer concentration low charge density polymers yield earlier setting than high charge polymers. However, this influence is overridden by the influence of the total amount of polymers in a cementitious system. Since PCE is typically added according to rheological specifications, and low charge PCE typically requires higher amounts of polymers than high charge PCE for comparable flow performance, low charge PCE retards setting more than high charge PCE. The paper furthermore points out that there is no significant influence of the polymer type or amount on the early deformations. Since type and amount strongly affect the hydration, it is demonstrated that early setting causes higher strain after the final set. It is hence concluded that higher PCE solid contents reduce the risk of early cracks that occur at time of setting, when a solid structure has already been formed but without resistance against cracks yet. T2 - 13th International congress on the chemistry of cement CY - Madrid, Spain DA - 03.07.2011 KW - Polycarboxylate superplasticizer KW - Setting KW - Heat evolution KW - Autogenous deformation KW - Self-compacting concrete KW - Calorimetry PY - 2011 SN - 978-84-7292-400-0 SP - 384 EP - 391 AN - OPUS4-24097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Controlling rheology - The key to individual concrete performance specifications N2 - During the last three decades concrete has emerged from a rather simple mass construction material based on only the three components cement, water, and aggregates towards a high performance material, which can be adjusted for high performance applications and according to ultimate user specifications. The reason for the rapid evolvement was the increasing awareness about how the rheology of concrete can be improved without negatively affecting the mechanical properties of concrete. Hence, mineral additions and in particular Chemical admixtures have been the most influential factors for the technological boost since approximately the 1980s. The incorporation of superplasticizers into concrete mixture compositions eventually facilitated concrete engineers to improve the workability properties without need to increase the water-cement-ratio (w/c) and furthermore to significantly reduce the w/c without loss of workability. This finally resulted in concrete with higher performance and specified properties. Fillers are basically used to improve the particle packing of cementitious Systems, but they can also be used beneficially to support the rheology, since they modify the water demand and may interact with superplasticizers as well. Finally, supplementary admixtures like polysaccharides have become more populär in the field of mortar, plaster, and grout technology. They can have a variety of rheological effects on cementitious Systems, which can be used to individually adjust their performance. The possibility to control the rheology and the significantly widened ränge of consistencies that can be adjusted opened up the gates for modern concrete and any type of high performance concrete. Therefore, without doubt, it can be concluded that the capability to control the rheology of concrete Systems can be considered as the catalyst for the invention of the many recent mortar and concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or engineered cementitious composites (ECC). Therefore, understanding the rheology of cementitious Systems and how to control the workability by the use of Chemical admixtures is the key to innovations in concrete technology. However, the other side of the coin of versatility is that sophisticated cementitious Systems have become more sensitive. Hence, concrete mixture composition with admixtures demands for a high level of expertise and often there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technoiogists. The paper gives a comprehensive overview about rheology modifying constituents such as superplasticizers, stabilising agents, and mineral fillers, and how they can be used depending upon the application in the most favourable way. T2 - Facade coatings and plasters - European coatings conference CY - Düsseldorf, Germany DA - 29.10.2013 PY - 2013 SP - 93 EP - 102 PB - Vincentz AN - OPUS4-30827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Concrete pavers for the mitigation of the urban heat island effect T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 2013-01-28 KW - Urban heat island effect KW - Earth-moist concrete KW - Concrete multilayers pavers KW - Water storage KW - Self-cooling pavement PY - 2013 SN - 978-3-9815360-3-4 SP - 953 EP - 960 AN - OPUS4-27769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Leinitz, Sarah ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - N., Khachani ED - Saadi, M ED - Aride, J. ED - Nounah, A. T1 - Concrete casting robustness improvement due to active rheology N2 - With ongoing innovation in process technology, the challenges of concrete technology are more and more focused on the rheological optimisation for these processes, since improper mixture stability or poor compaction ability negatively affect the concrete homogeneity and quality. However, along with the increasing complexity of today’s concrete mixture compositions, concrete becomes more prone to failure regarding the casting process. Variable properties of the raw materials typically cause changing workability. The reasons can be found among others in scattering water contents, physical or chemical properties of the cement or varying environmental temperatures. Robustness in the delicately adjusted rheology, however, is of utmost importance for modern and future process technology, from sprayed concrete over pumpable concrete towards 3D-printing, with regard to the long-term strength, the function and the durability. Typically, material induced changes cannot be identified easily due to the complex interactions of concrete constituents. Therefore, a precise and prompt counteraction is impossible. However, it is known that the yield stress can be controlled by addition of supplementary superplasticizer or stabilising agent. In combination with computerized process observation tools that can rapidly interpret and react on changes in the rheology, it is therefore thinkable, that only these two admixture types can adjust the rheology steadily and permanently, regardless of the actual root cause for observed macroscopic rheology change. The presentation will firstly give a comprehensive overview of effects at the interface between pore solution, particles and hydrates, which affect the rheology of fresh concrete. Secondly, ways are recommended how the rheology can be actively manipulated before eventually computerized methods are demonstrated that help to actively and rapidly assess and counteract performance scatter during steady casting processes. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Cusum KW - Rheology KW - Control Chart KW - Concrete KW - Robustness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444317 DO - https://doi.org/10.1051/matecconf/201814901001 SN - 2261-236X VL - 149 SP - 01001-1 EP - 01001-7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines A1 - Breitschaft, G. A1 - Virchow, S. ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - Khachani, N. ED - Saadi, M. ED - Aride, J. ED - Nounah, A. T1 - Challenges of the growing African cement market – environmental issues, regulative framework, and quality infrastructure requirements N2 - The African cement, concrete and construction business is growing at rapid pace. The cement sales are expected to grow rapidly until 2050. The number of newly built cement plants increases dramatically and in addition more cements are being imported from outside the continent, e.g. from Turkey, Pakistan, Indonesia, and China, driven by overcapacities in the countries of origin. This causes a high number of potentials and challenges at the same time. Newly built cement plants can operate directly at best technological state of the art and thus incorporate more sustainable technologies as well as produce new and more sustainable products such as cements blended with sustainable supplementary cementitious materials such as calcined clays, and industrial or agricultural by products. At the same time the new variety of binding agent as well as the international imports, which are driven by price considerations, make the cement market prone to quality scatter. This puts pressure on the quality control regulations and institutions to ensure safety of construction, healthy application, and environmental safety for the population. The paper presents possible solutions to build up the rapidly increasing African cement production more sustainably than in the rest of the world as well as the related challenges and obstacles that need to be overcome. Based on experiences with a series of pan-African cement testing laboratory proficiency schemes conclusions are made on technical, regulative and political level. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Quality Infrastructure KW - Africa KW - Proficiency Testing KW - Cement KW - Admixtures PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444330 DO - https://doi.org/10.1051/matecconf/201814901014 SN - 2261-236X VL - 149 SP - 01014-1 EP - 01014-8 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Challenges of the African environmental conditions for concrete mixture composition N2 - Concrete technology was exposed to a rapid development during the last three decades. For the longest time in its history, concrete was considered as a three component System consisting of aggregates, which are bound by the hardened cement paste consisting of hydrated cement. Traditionally, the only way of adjusting the consistency of concrete was using well adjusted aggregates and grading curves and adding excess water to the concrete, accepting that the latter in return reduces strength and durability. During the last three decades, however, concrete has developed further from a three component System towards an (at least) five component system, since the use of mineral additions and Chemical admixtures has become state of the art. Both components are able to enhance the workability, the compactability, and the density of the microstructure with effects on strength, ductility and durability, while cement can be saved in parallel. Due to reasonable use of admixtures and additions, concrete can be designed to match mechanically high performance specifications. Traditionally, cement paste was considered the weakest component in concrete. Flowever, in modern concrete a good paste composition can yield highest performance, passing the role of the mechanical bottleneck towards the aggregates. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 KW - Cement KW - Concrete KW - Mixture composition KW - Africa KW - Climatic conditions PY - 2011 SN - 978-3-9814281-4-8 SP - 37 EP - 49 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Bella, N. A1 - Rongai, G. A1 - Kühne, Hans-Carsten A1 - Diergardt, T. ED - Diouri, A. ED - Khachani, N. ED - Alami Talbi, M. ED - Ait Brahim, L. ED - Bahi, L. T1 - Cement testing in Africa - Conclusions from the first africa-wide proficiency testing scheme N2 - African cement inffastructure is quite complex. Apart from Northern Africa and South Africa in particular, cement plants are scarce resulting in highly unstable cement pricing. Clinker and cement are imported from overseas, e.g. from Portugal, Turkey, Pakistan, Indonesia, and China. Imports are typically determined by the lowest price, and as a result the countries of origin of products vaiy regularly yielding large scatter of properties. Quality control and a good quality infrastructure are thus of utmost importance for the safety of the popuiace, an issue, which is actually often neglected. With funding of the German Metrology Institute (PTB) and Support of the SPIN project, a proficiency testing scheme for cement testing according to EN 196 was set up for African laboratories. Proficiency testing schemes, also called round robins. are interlaboratory performance comparisons allowing participants to evaluate themselves against pre-established criteria. Thev are a powerful tool to help laboratories improve their performance as well as demonstrate their competences to accreditation bodies or Customers. 26 laboratories from 20 nations, 18 of which from Africa, participated. The BAM Federal Institute for Materials Research and Testing acted as coordinator and provider of the scheme. The aim of the round robin was to interpret the submitted data further beyond the pure statistic analyses. The data provided a positive picture of the performance of the participants in general, but it also exhibited a number of technical fields that need improvement. The paper provides the general results of the scheme and analyses identified strengths and weak points based on the submitted and non submitted data as well as on discrepancies from the EN 196 procedures during measurements. The application of EN Standards for material testing is critically discussed and since quality infrastructure is also always an issue between industrial and political stakeholders, suggestions for the mitigation of the identified shared problems are given. T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions CY - Rabat, Morocco DA - 27.11.2013 KW - Viscosity modifying agent KW - Metakaolin KW - Diutan gum KW - Welan gum KW - Rheology PY - 2013 SN - 978-9954-32-689-3 SP - 1 EP - 5 AN - OPUS4-30042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Rogge, A. ED - Meng, B. T1 - Cement and concrete development in Africa: the role of the SPIN project T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 PY - 2011 SN - 978-3-9814281-0-0 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 339 EP - 344 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Radebe, N. ED - Schmidt, Wolfram T1 - Biased by analytical equipment N2 - Today, in scientific events often a certain separation between researchers from laboratories with highly sophisticated equipment and those from less privileged laboratories can be observed. It is not an uncommon situation that results presented at conferences are rubbished or ridiculed because the investigator only used low-end analytical methods. The assessment of the study is then biased based on the equipment, regardless of the actual quality of the study. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Analytics KW - Africa KW - Bias KW - Science KW - Research PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484877 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 203 EP - 204 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Betontechnologische Ansätze zur Vermeidung innerstädtischer Hitzeinseln N2 - Die Versiegelung von Oberflächen, Bebauung und die Ausweitung städtischer Gebiete führen weltweit besonders in sonnenreichen Regionen zu innerstädtischen Hitzeinseln. Diese Flächen wirken als Wärmespeicher, so dass an Sonnentagen eine Temperaturdifferenz bis zu 10 K zwischen Stadt und umliegendem Land entstehen kann. Verstärkt wird dieser sogenannte Urban Heat Island Effect (UHIE) durch die meist direkte Abführung des anfallenden Regenwassers in die Kanalisation, wodurch eine Kühlung durch stetige Verdunstung unterbunden ist, Mit steigender Urbanisierung wächst auch die Bedeutung dieses Phänomens. Innerstädtische Hitzeinseln ziehen direkte wirtschaftliche und soziale Folgen nach sich, da hohe Temperaturen eine teure Klimatisierung der Städte bedingen. So entsteht ein erhöhter Verbrauch an Ressourcen sowie zusätzliche Abwärme. Das Wohlbefinden und die Gesundheit der Bevölkerung verschlechtern sich bei sehr hohen Temperaturen, was zu sinkender Leistungsfähigkeit und sogar zu einer erhöhten Sterberate führen kann. T2 - 18. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2012 PY - 2012 SN - 978-3-00-034075-8 VL - 2 IS - 3.07 SP - 2-0042 EP - 2-0050 AN - OPUS4-26545 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Rogge, A. ED - Meng, B. T1 - Betonpflastersteine mit erweiterten Leistungsmerkmalen T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 PY - 2011 SN - 978-3-9814281-0-0 N1 - Geburtsname von Barthel, Maria: Meinel, M. - Birth name of Barthel, Maria: Meinel, M. SP - 194 EP - 203 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25182 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Assessment of rheological effects in the binder on the rheology of mortar and concrete N2 - In the last years flowable concrete has become increasingly important in applications such as, for systems with highly reinforced concrete with a complicated formwork, or sprayed concrete and 3D-printing of concrete. For all these applications it is necessary to have tailored rheological properties. Rheology can be described by values of yield stress and plastic viscosity, which can be determined for example by evaluation of rheometer measurements. But for different materials various rheometers with different geometries and stirrers are being used. To see the effects from paste in concrete, it is necessary to investigate mixes of paste, mortar and concrete, stepwise. But currently there exists no device, which is calibrated for these different systems at once. Due to this fact, conventional tests such as V-funnel efflux-time and flow diameter were determined, as well as rheometer data in different cell sizes and geometries. In this study the assessment of rheological effects in the binder on the rheology of mortar and concrete was investigated by using combination of two rheometers. T2 - Rheologische Messungen an Baustoffen 2018, 27. Workshop und Kolloquium CY - Regensburg, Germany DA - 07.03.2018 KW - Rheology KW - Cement KW - Mortar KW - Upscaling KW - Superplasticizer PY - 2018 SN - 978-3-7469-1878-5 VL - 27 SP - 109 EP - 111 PB - tredition GmbH AN - OPUS4-44444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Beushausen, Hans T1 - Application of a cusum control system for enhanced robustness of the flow properties of self-compacting concrete N2 - Control chart systems are used in quality management systems to keep production processes stable. In concrete production they are often applied for the control of the compressive strength. The most efficient control chart systems are cumulated sums (cusum), which help to observe deviations from a targeted value. Unlike alternative observation chart systems that focus on process data evaluation, cusum observations react very rapidly on systematic process changes in processes. Therefore, the cusum method is particularly suitable if immediate counteractions have to be taken, like in the case of fresh concrete properties of self-compacting concrete (SCC), which can have severe influences on the durability and mechanical strength of concrete. The rheology of SCC can be affected by an enormous variety of influencing factors, from raw material properties to handling or environmental temperature. The present study shows that regardless of the material based influencing parameter for a rheology change, a steady slump flow can be achieved only by adding supplementary superplasticizer in case of loss of flow and adding stabilising agent (ST) in case of increased flow if the respective V-mask indicates a systematic change. A reference SCC was artificially manipulated in order to achieve realistic experimental data for flowability and flowability changes due to changes in the raw material properties. The results point out that productions with applied cusum methods were capable of keeping the target slump flow deviation within approximately 1% only, while productions without applied cusum method deviated up to 14% and more from the target. T2 - fib Symposium 2016. Performance-Based Approaches for Concrete Structures. CY - Cape Town, South Africa DA - 21.11.2016 KW - Concrete KW - Self-compacting concrete KW - cusum KW - control chart KW - quality control KW - robustness PY - 2016 SN - 978-2-88394-121-2 SP - 106-1 EP - 106-10 PB - Fédération internationale du béton ( fib) CY - Lausanne, Switzerland AN - OPUS4-40976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Schmidt, Wolfram T1 - Analyse von Schallemissionen bei Zugversuchen an hochduktilem Beton N2 - Hochduktiler Beton eröffnet neue Möglichkeiten bei der Instandsetzung von Bauwerken, der Herstellung dünnwandiger Bauelemente oder dem Einsatz von Dämpfungselementen in stoßartig beanspruchten Bauwerken (z.B. in Erdbebengebieten). Die Steigerung der Duktilität kann durch die Zugabe von Kurzfasern erreicht werden. Im Falle einer Rissbildung in der Zementsteinmatrix überbrücken die Fasern den Riss, nehmen die Spannung vollständig auf und stoppen lokal das Risswachstum. Bei weiterer Steigerung der Last reißt die Matrix an anderer Stelle. Auf diese Weise wird die Rissbildung fein verteilt und es werden große Dehnungen erreicht, bevor das Bauteil versagt. Zur Optimierung der Festbetoneigenschaften müssen die Matrixfestigkeit und die Faserart sowie deren Gehalt aufeinander abgestimmt werden. Dabei sind auch die Verarbeitungseigenschaften des Frischbetons zu berücksichtigen. Anhand der Schallemissionen kann die Rissbildung in der Matrix und die Interaktion mit den Fasern analysiert werden. So konnte in ersten Zugversuchen gezeigt werden, dass sich Schallereignisse dem Versagen der Zementsteinmatrix bzw. dem Auszug der Fasern aus der Matrix zuordnen lassen. Damit steht zur Beurteilung des mechanischen Verhaltens von hochduktilem Beton neben der Spannungs-Dehnungs-Linie ein weiteres Verfahren zur Verfügung. T2 - 20. Kolloquium Schallemission - Statusberichte zur Entwicklung und Anwendung der Schallemissionsanalyse CY - Garmisch-Partenkirchen, Germany DA - 18.06.2015 KW - SHCC KW - Hochduktiler Beton KW - Schallemission KW - Zugversuch KW - PVA-Fasern KW - Faserverstärkter Beton PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-331920 SN - 978-3-940283-73-3 IS - DGZfP-BB 153 SP - Vortrag 4, 1 EP - 7 AN - OPUS4-33192 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bintz, Thilo A1 - Munsch, Sarah Mandy A1 - Stelzner, Ludwig A1 - Lauinger, Robert A1 - Schmidt, Wolfram A1 - Kruschwitz, Sabine T1 - An NMR tomograph for building materials - applications, experimental studies and limitations - N2 - A summary of the possibilities, technical limitations and application examples for a unique NMR tomograph at BAM. T2 - 13th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), 2021 CY - Kiel, Germany DA - 27.06.2021 KW - Relaxation time distribution KW - NMR imaging KW - Capillary suction PY - 2021 SN - 978-1-7281-8738-9 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. SP - 106 EP - 110 PB - IEEE AN - OPUS4-53116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Birgit A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten ED - Rogge, A. ED - Meng, B. T1 - Aktuelle Forschungsansätze zur Rheologie von Frischbeton T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 KW - Baustoffe KW - Beton KW - Frischbeton KW - Rheologie PY - 2011 SN - 978-3-9814281-0-0 SP - 33 EP - 39 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25195 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Uzoegbo, H. C. A1 - Makunza, J. K. ED - Malhotra, V. M. ED - Gupta, P. R. ED - Holland, T. C. T1 - Admixture concepts for the Sub-Saharan African environment with indigenous raw materials N2 - The economic use of chemical admixtures depends on supply chains. Therefore, in most regions ins sub-Saharan Africa (SSA), the use of admixtures is not common practice. This amplifies the unfavorable framework for concrete construction such as fragmentary supply chains, high local cement prices, and unfavorable construction site facilities in this region significantly. The use of superplasticizer (SP) and stabilizing agents (STA) can enhance the concrete technology in SSA, since they can disassociate the concrete quality from external boundary influences. After providing a general overview of the peculiarities of the SSA boundary framework, economic concepts are provided, how existing material solutions can be significantly improved by the use of SPs and STAs based on locally available materials such as lignosulphonates and cassava starch. Finally a three step optimization process is described that helps developing flowable concrete based on materials that can be accessed in most locations in SSA. T2 - 11th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Ottawa, Canada DA - 12.07.2015 KW - Lignosulfonate KW - Polycarboxylate ether KW - Robustness KW - Self-compacting concrete KW - Sub-Saharan Africa PY - 2015 SN - 9781942727224 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - SP-302-37, 491 EP - 505 AN - OPUS4-36860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Anniser, J. A1 - Manful, K. ED - Schmidt, Wolfram T1 - A sustainability point of view on horizontal and vertical urban growth N2 - In many regions of the world the urbanisation process is accelerating dramatically. This puts pressure on urban planners but also politics to develop strategies for sustainable city growth. With the rapidly increasing demand for living space in urban areas, cities typically grow vertically. This is largely driven by real estate markets and sometimes also by the desire for status symbols. Certainly, vertical urban growth makes sense, when horizontal growth destroys important flora and Fauna (e.g. in rain forest regions), but in many cases vertical growth is result of real-estate business and Expansion limitation due to state or country borders. However, economics and borders are made by humans. They follow human-made rules. Gravity does not. Therefore, from a point of view of sustainable materials and resourceuse, the trending vertical growth of cities may come under scrutiny. The following aspects should be considered, when a decision is taken between a new quarter with limited number of storeys or a new skyscraper. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urbanisation KW - Construction KW - Materials KW - Sustainability KW - Carbon emissions PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484848 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 189 EP - 193 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Umeche, E. L. A1 - Schmidt, Wolfram A1 - Uzoegbo, H. Ch. ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - A survey and analysis of locally available cements in South Africa N2 - South Africa and recently Nigeria are the only net exporter of cement in Africa, yet cements are imported into the country mainly on the basis of price competitiveness. This poses potential for scatter in the properties of the cements in the South African market as pricing seems to be the only determining factor that affects Portland cements imported. A survey of cements of grade 42.5N in the South African cement market was carried out to identify major players in the industry. The identified cements, which included four locally produced and one imported cement were then analysed for both chemical composition and physical properties in line with the Eurocode EN 196. Tests carried out include loss on ignition, chloride content, sulphate content, specific surface (Blaine), standard consistence, initial setting time, final setting time, soundness and flexural and compressive strength at 2, 7 and 28 days. The testing program was initiated as part of on-going Africa-wide cement testing competency program in partnership with BAM and PTB in Germany. The performance of the identified cements from the different local manufacturers and the imported cement were analysed and are presented in this paper. These results reveal some similarities and differences in the properties. Particularly of interest is the marked difference in the 28 days compressive strength of the cements. This paper shows that there is need for further tests across the cement industry as some of the cements failed to meet certain requirement as set by EN 196. The paper also recommends the use of proficiency testing schemes in the cement industry of the country to ensure the cement laboratories are providing results of high quality and at the same time act as a check to make sure these laboratories are not failing to meet standard requirements. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cement KW - Proficiency testing KW - EN 196 KW - Standards KW - South Africa PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 91 EP - 98 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kumaran, G.S. A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Florea, M.V.A. A1 - Nibasumba, P. ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - A study on sustainable energy for cement industries in Rwanda N2 - Rwanda is a landlocked country in the East Africa. It is surrounded by Uganda, Tanzania, Congo and Burundi. Rwanda is a fast developing country and it spends most of its revenues to import fossil fuels from either through Mombasa Port in Kenya or Dar es Salaam port in Tanzania because the energy production in Rwanda is not sufficient for its development. Transporting the fuels from these ports, add on to the cost of all materials, cement industry being no exception. There are three cement companies in Rwanda. The cement industries could not run in full production due to the shortage of fuel. Moreover, Rwanda is importing all the construction materials such as steel, roofing materials, etc from its neighbouring countries. This increases the cost of construction and the common man find difficult to own a house. In order to sustain the energy needs of Rwanda, different sources of energies should be focused. They are Peat, Geothermal, Methane gas, solar, wind, waste materials and Municipal wastes. Without affecting the environment, there is an urgent need to find a solution on sustainable energy in Rwanda. This paper discusses about the possible sources of energy in Rwanda which will improve the energy sustainability and turn the economy of Rwanda. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Biomass KW - Cement production KW - Peat KW - Energy sustainability PY - 2013 SN - 978-3-9815360-3-4 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1169 EP - 1175 AN - OPUS4-27766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -