TY - CONF A1 - Schmidt, Wolfram A1 - Radlinska, A. A1 - Nmai, C. A1 - Buregyeya, A. A1 - Lai, W.L. A1 - Kou, S. ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Why does Africa need African concrete? An observation of concrete in Europe, America, and Asia - and conclusions for Africa N2 - Portland cement, as we know it today, has its origin in Great Britain approximately 170 years ago. Since then, concrete technology has spread out to Europe, the United States, and Japan, where it became a key component for rapid industrial development. Europe, the Unites States and many Asian countries today have developed a high level of technology regarding concrete construction. However, each of them has a unique history and as a result, different “concrete philosophy” depending upon the social, environmental and financial boundary conditions, as well as their evolution throughout the years and local construction traditions. As a result, the word concrete may refer to rather different materials in America, Europe, and Asia. Apart from South Africa, most sub-Saharan African countries cannot look back on a similarly long cement and concrete history. Cement and concrete are rather new materials and not yet well established. This gives African engineers the unique opportunity to learn from past mistakes and to develop a concrete technology, which refers to the best available practice. However, in many sub-Saharan African countries, standards and regulations are adopted (preferably from Europe or the US) without consideration of the historical background of these standards. Although this practice helps saving resources for the implementation, it does not necessarily yield the best result in the African environment, and also from an economic point of view it might come back disadvantageously due to unnecessary overdesigning. By comparing the differing states-of-the-art in North America, Europe, and Asia, this paper emphasizes, how regional conditions determine the practice of concrete technology in the sub-Saharan area. It is therefore important for Africa to develop a unique African concrete technology, which is perfectly fitted to the specific local conditions, even if it may vary distinctively from the established practice elsewhere. The paper concludes that African nations should effort into adapting existing principles that have proved to function well rather than adopting existing standards. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Cement KW - Casting environment KW - Concrete KW - Durability KW - Standards PY - 2013 SN - 978-3-9815360-3-4 SP - 1139 EP - 1147 AN - OPUS4-27767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan ED - Schmidt, Wolfram T1 - Why Africa can spearhead innovative and sustainable cement and concrete technologies globally N2 - The perception of concrete in the society as well as in the politics is rather negative. This becomes obvious in the fact that the phrase “concrete jungle” has become synonym for hapless living with no perspectives. In politics and research funding, it is also not easy to create a broader audience, since concrete is falsely considered as old-fashioned material that is sufficiently understood today and does not need further considerations, particularly compared to allegedly newer materials. However, particularly since the last two decades the technology has completely changed. Binders of today are no more the same binders as used before, and concrete mixture compositions of today diverge quite significantly from compositions in the past. There is little understanding world-wide about that. This causes that potentials the concrete technology bears are wasted. In the broadly found opinion that concrete is old-fashioned and ugly, it is ignored that architectural sins are not inherent to the material, which actually is extremely versatile and CO2-friendly compared to all other construction materials available. It is also ignored that 98% of the outer Earth’s crust are made of the elements cement and concrete are made from, and therefore it will be an illusion to believe that the complementary 2% can create materials to develop regions and infrastructures in less developed areas in the world. For betterment in Africa the infrastructural development should have highest priority, since poor connections between settlements are responsible for enormous Price increases [2], and urban traffic congestion is responsible for an incredible loss of productivity. It is not unrealistic to assume that earners that are dependent on a car get stuck in traffic about 3-4 hours per day in cities like Lagos, Nairobi or Dar es Salaam. However, the traffic congestions do not only affect the car owners negatively but the living of the entire urban population every day. Besides infrastructure, housing should be the other priority, since a large part of the African population does not live in adequate condition. This is a societal problem, since unequal Distribution of wealth is a major driving force for instability in societies. The latter has a global impact, since 8 many phenomena that can be observed all over the world such as political radicalism, xenophobia, terrorism, and migration can often be linked to instable societies. However, the importance of infrastructure has an even wider range. Most African countries go through a change process recently. In order to strengthen very positive perspectives, the focus in politics and research funding is put on issues such as agriculture, energy, and health, which are without doubt extremely important issues. However, it is typically overlooked that all enhancements in these areas can only become effective, when an infrastructure is created to support the implementation of better concepts. Mobility is the key to a prosperous future, and mobility can only be granted by infrastructural construction activities. Hence, compared to many other regions in the world, cement and concrete technologies have a significantly higher relevance in Africa. T2 - 2nd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Accra, Ghana DA - 7.6.2016 KW - Cement KW - Concrete KW - Sustainability KW - Carbon dioxide KW - Polysaccharides KW - Cassava KW - Rheology PY - 2016 SN - 978-3-9817853-1-9 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 2 SP - 7 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573755 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Iyuke, S.E. ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - The influence of starches on some properties of concrete N2 - Starches and its derivatives are known to exhibit viscosity modifying characteristics. In an ongoing work, the influence of com and cassava starches on some properties of concrete such as compressive strength, heat of hydration and creep are examined. Various percentages (0.0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Preliminary results of compressive strengths showed that both starches have some positive impact (e.g. there was 5.3 % increase in strength due to a 1 % addition of com starch by weight of cement in comparison to the control while cassava starch of the same percentage gave 4.9 % increase in strength) at certain percentages of starch addition to concrete at 28 days. The creep and hydration results shows the starch additions compares well and in some instance performs better. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Starches KW - Concrete KW - Compressive strength KW - Heat of hydration KW - Creep PY - 2013 SN - 978-3-9815360-3-4 SP - 637 EP - 645 AN - OPUS4-27756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Ramirez Caro, Alejandra T1 - The action of aggregates on concrete rheology N2 - Most factors acting on concrete rheology work at an extremely small-scale level. Influencing factors in the millimetre or centimetre area are essentially restricted to sand and aggregates. The latter, however, make up 50 to 70% of the total volume of most concretes – a fact often ignored in research on controlling concrete processing properties. Whereas suitably chosen concrete admixtures and additives can influence rheology in a very targeted manner, sand and aggregates are less suitable for controlling rheology but nonetheless contribute to the rheology of the Overall system. The actions of sand and aggregate can impose themselves upon the actions of admixtures and additives and, in unfavourable circumstances, even render them redundant. For this reason, any results concerning the processability of binding agent systems can only be transferred to concrete with great care. It is important to better understand the action of sand and aggregates in order to be able to harmonise them in such a way that they complement the action of superplasticisers positively, instead of working against them. Savings on costs can also be made by this targeted fine-tuning. KW - Rheology KW - Aggregates KW - Viscosity KW - Yield stress KW - Concrete PY - 2018 VL - 3 SP - 42 EP - 49 PB - ad-media GmbH CY - Cologne AN - OPUS4-47045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram T1 - Start of round-robin test for cement testing in Africa / Start für Ringversuch zur Zementprüfung in Afrika KW - Africa KW - Cement KW - Concrete KW - Proficiency testing KW - Round robin PY - 2012 UR - http://www.bft-international.com/de/artikel/bft_2012-08_Start_fuer_Ringversuch_zur_Zementpruefung_in_Afrika_1468912.html SN - 0373-4331 SN - 1865-6528 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 08 SP - 54 EP - 55 PB - Bauverl. CY - Gütersloh AN - OPUS4-26429 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Sonebi, M. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa N2 - Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technologicalspecifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. KW - Rheology KW - Admixtures KW - Concrete KW - Superplasticizers KW - Polycarboxylate ether KW - Viscosity modifying agents PY - 2013 SN - 2224-3224 SN - 2225-0956 VL - 5 SP - 115 EP - 120 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-30948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Inès A1 - Mbugua, Rose A1 - Adisa Olonade, Kolawole T1 - Promising bio-based rheology modifying agents for concrete N2 - Today, concrete engineers can vary consistencies between very stiff and self-compacting. The possibility to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology of concrete systems can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere, and particularly in Africa, the effective use of chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in Africa it is difficult to use them, due to lacking local supply and supply infrastructure. For Africa, concrete admixtures are largely shipped or transported from Europe, the Arabian Peninsula, or Asia. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is not a large variety of products available in the market. However, bio-based chemicals have been used in construction for ages effectively. Due to the enormous relevance of rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in most countries in Africa. However, alternatives are available, which can be found in many regions. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - Rheologie komplexer Fluide: Theorie, Experiment und Anwendung, DRG/ProcessNet | Gemeinsame Diskussionstagung CY - Berlin, Germany DA - 13.3.2017 KW - Africa KW - Cement KW - Concrete KW - Admixtures KW - Polysaccharides KW - Cassava KW - Starch KW - Triumfetta Pendrata A. Rich KW - Nkui PY - 2016 AN - OPUS4-40979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Promising bio-based material solutions for more sustainable concrete N2 - Today, concrete engineers can vary consistencies between very stiff and self-compacting. At the same time engineers can opt for a vast variety of binders. The possibility to use optimised mineral binders and to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology and the interactions particles can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying additions, SCMs and admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere the effective use of SCMs, additions and chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in many countries with challenging climatic conditions, it is difficult to use them, due to lacking local supply and supply infrastructure, and often the awareness of the value of local mineral resources is missing. However, the long distance transportation of mineral resources and chemicals is not very environmentally friendly and the economic consequences are dramatic. However, bio-based constituents and chemicals have been used in construction for ages effectively. Due to the enormous relevance of binders, fillers and rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of products that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in many countries in the world. However, alternatives are available, which can be found locally. In addition many agricultural wastes today are dumped, although they could be converted to reactive ashes easily. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for binders, fillers and rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - Peak Forum on Sustainable Civil Engineering Materials CY - Shanghai, China DA - 18.05.2017 KW - Cement KW - Concrete KW - Sustainability KW - Bio-based materials KW - Polysaccharides KW - Supplementary cementitious materials PY - 2017 AN - OPUS4-41031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Potentials for sustainable cement and concrete technologies - Comparison between Africa and Europe N2 - The fundamental knowledge about cement and concrete has made enormous progress over the last decades, and today it would be possible to find optimised sustainable concrete solutions tailored for every given boundary framework and raw material supply. However, this knowledge barely finds implementation into practice despite the urgent global need to minimise carbon emissions and energy consumption. A major reason is that most concrete developments were historically made in the northern hemisphere, where today over-regulations and stagnating market perspectives slow down innovation drive towards higher sustainability. In most African countries, however, sustainable building is simply an urgent real-life problem. The demand for building is enormous, Standard solutions are not an option, and the pool of innovative local raw materials and concrete concepts is enormous. The paper provides a comprehensive comparison between the boundary frameworks of Europe and Africa, and it is explained why local African solutions shall be given priority over imported solutions. Examples of local African concrete solutions are given, and ideas for a rapid implementation are developed. Most of the potentially useful materials such as agricultural ashes, natural and calcined pozzolans, polysaccharides, etc. have not yet been subject to intensive research to date. Therefore, it is not unlikely to assume that with an open mind for non-Standard solutions, combined with creativity and particularly knowledge and awareness, the next generation of innovative and sustainable concretes will be developed and applied on the African continent. Therefore, the conclusion is that particularly the African continent provides the best starting position to develop better and more sustainable concrete solutions than anywhere else in the world. Hence, Africa can become a global pioneer in green cement and concrete technology with impact to the entire world. N2 - Posljednih desetljeća načinjen je golem napredak u temeljnim znanjima o cementu i betonu. Danas bi bilo moguće naći rješenja za optimalni održivi beton primjeren svakom danom okviru i dobavi sirovina. Međutim, takvo znanje jedva da se primjenjuje u praksi unatoč hitnoj globalnoj potrebi smanjenja na najmanju mjeru emisija ugljika i potrošnje energije. Glavni je razlog što je većina razvoja u području betona tijekom povijesti načinjena u sjevernoj hemisferi gdje danas preregulacija i perspektiva stagnirajućeg tržišta usporavaju inovacije ka većoj održivosti. Međutim, u većini afričkih zemalja održiva gradnja jednostavno je hitni problem svakodnevice. Zahtjevi za gradnjom su golemi, obična rješenja nisu opcija, rezerve inovativnih lokalnih sirovina i mogućnosti primjene betona su golemi. U radu se daje sveobuhvatna usporedba graničnih okosnica Europe i Afrike, a objašnjeno je zašto se lokalnim afričkim rješenjima mora dati prioritet pred uvezenim rješenjima. Većina potencijalno korisnih materijala kao što su pepeli iz poljoprivrede, prirodni i kalcinirani pucolani, polisaharidi itd. do danas nisu bili predmetom intenzivnih istraživanja. Stoga nije nevjerojatno pretpostaviti da će se Nova generacija inovativnih i održivih betona razviti i primijeniti na afričkom kontinentu uz otvorenost prema nestandardnim rješenjima i u kombinaciji s kreativnošću i posebno znanjem i sviješću. Stoga je zaključeno da naročito afrički kontinent osigurava najbolju početnu poziciju za razvoj boljih i održivijih betona nego bilo gdje u svijetu. Prema tome Afrika može postati svjetski pionir u tehnologiji zelenoga cementa i betona s utjecajem na cijeli svijet. T2 - 1st International Conference on Construction Materials for a Sustainable Future CY - Zadar, Croatia DA - 19.4.2017 KW - Africa KW - Sustainability KW - Cement KW - Concrete KW - Admixtures KW - Carbon emissions PY - 2017 SN - 978-953-8168-04-8 SP - 829 EP - 835 CY - Zagreb, Croatia AN - OPUS4-40977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten T1 - Optimising the rheology of concrete for sub-Saharan African boundary conditions / Optimierung der Rheologie von Beton für Rahmenbedingungen in Subsahara-Afrika N2 - Die Zement- und Betontechnologie in Afrika hat keine ähnlich lange Tradition wie viele Länder der nördlichen Hemisphäre. In vielen afrikanischen Ländern ist die Bauindustrie jedoch von Wachstum gekennzeichnet und hier werden Zement und Beton zukünftig zweifelsohne an Bedeutung gewinnen. KW - Africa KW - Cement KW - Concrete KW - Proficiency testing KW - Round robin PY - 2012 SN - 0373-4331 SN - 1865-6528 N1 - Sprachen: Deutsch/Englisch - Languages: German/English N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 78 IS - 09 SP - 60 EP - 67 PB - Bauverl. CY - Gütersloh AN - OPUS4-27338 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, I. L. A1 - Mbugua, R. A1 - Olonade, K. A. ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Natural rheology modifying admixtures for concrete N2 - The possibility to tailor the rheology of concrete eventually opened up the path to new technologies, where design criteria are no longer limited to the compressive strength. Thus, it can be concluded that the capability to control the rheology of concrete can be considered as catalyst for many of today’s concrete innovations. In the same way rheology modifying admixtures will be key to mastering the challenges of the next decades. In many regions of the Southern hemisphere, the effective use of chemical admixtures would significantly contribute to solve problems induced by the challenging climate, but particularly in Africa there is often a lack of local supply and supply infrastructure. In Africa, concrete admixtures are largely shipped or transported from outside the continent. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is no large variety of products available in the market. Due to the enormous relevance of rheology modifying admixtures, it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing and without enormous transportation distances, since these plants are typically regionally abundantly available, cheap, and they are environmental friendly. The paper presents an overview of various options for rheology modifying admixtures, that can be found in Africa, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - 26. Workshop und Kolloquium "Rheologische Messungen an Baustoffen" CY - Regensburg, Germany DA - 21.02.2017 KW - Concrete KW - Rheology PY - 2017 SN - 978-3-7439-0171-1 SP - 75 EP - 87 PB - tredition GmbH CY - Hamburg AN - OPUS4-40599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barucker-Sturzenbecher, Meike A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Learning from the future - How children of Mukuru fancy the city of tomorrow N2 - Sustainability means meeting the needs of today without compromising the needs of the next generations. How can we meet the needs of the next generations, if we do not even know what these needs are? If we do not listen to the next generation and learn from them? Do we even meet the needs of today for everyone on earth? T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urban planning KW - Concrete KW - Mukuru KW - Africa KW - Sustainability PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484832 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 194 EP - 197 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Rübner, Katrin ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Interactions between waste paper sludge ashes and superplasticizers based on polycarboxylates N2 - In many industrial nations, about two third of the paper demand is covered by recovered paper. A major process step within the treatment of waste paper is the de-inking. It is a floating process yielding paper sludge as a waste product. About 50 % of this residue is used as a fuel. In several cases it is burnt at temperature of about 850 °C and thereafter the accrued ashes are collected in the flue gas filter. During the combustion, kaolinite and calcium oxide generate gehlenite and larnite. Calcite is the main component of waste paper sludge ash (PA).The chemical and mineralogical composition of PA suggests using it as a supplementary cementitious material. In modern construction materials technology, workability aspects gain importance, since for most modern materials the rheology and compaction ability are relevant for the operation at a hardened state. It was observed that PA significantly increases the water demand of powder systems, which can cause serious problems during the casting of mineral binder systems containing PA. It is therefore obvious that binder systems containing PA might demand for the use of superplasticizers. Superplasticizers are polymers with anionic backbone that cause electrostatic and steric repulsion effects upon adsorption on surfaces of particles and hydration phases. In this paper interactions between superplasticizers and waste paper sludge ashes are discussed and analysed. Based on observations of changes in the zeta potential and the dispersion of the particle system, the influence of the charge density of superplasticizers is observed and time dependent effects are demonstrated. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Waste paper sludge KW - Rheology KW - Cement KW - Concrete KW - Polycarboxylate ether PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 181 EP - 186 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Mota Gassó, Berta A1 - Sturm, Heinz A1 - Pauli, Jutta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Influence of effects on nano and micro scale on the rheological performance of cement paste, mortar and concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 25. Workshop und Kolloquium Rheologische Messsungen an Baustoffen CY - Regensburg, Germany DA - 02.03.2016 KW - Rheology KW - Cement KW - Concrete KW - Superplasticizer KW - Nano scale PY - 2016 SN - 978-3-7345-1313-8 SP - 294 EP - 307 PB - tredition CY - Hamburg AN - OPUS4-36862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Future civil engineering challenges - Skill requirements, new professional profiles and implementation N2 - Urbanisation, habitat, environment, infrastructure and sustainability are major global challenges of the 21st century. By planning, exploiting of resources, building, and maintaining, civil engineers and relevant adjacent disciplines have been carrying a large responsibility for the existing environmental problems. Civil engineers are responsible for 70% of all material uses in the world, and civil construction has been dominating the growth of the developing world for the next decades, with enormous impact on the global climate as well as the distribution of wealth and quality of living in the world. Today a variety of sustainable construction concepts have been developed and discussed. Recently a UNEP report was published, which provides a comprehensive overview of the challenges and potentials in the future from a scientific and industrial point of view. Sustainable solutions based on abundantly available resources (pozzolana and clay) or on renewable instead of limited industrial by-products (e.g. agricultural waste ashes) and new construction echnologies do exist. By applying, promoting and developing the implementation of the existing knowledge into real life constructions, civil engineers also hold the key for the mitigation of the global challenges. Using best practice sustainable construction solutions is particularly of highest importance in the developing world, since the implementation at an early stage creates the highest leverage for positive effects. T2 - 3rd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Johannesburg, South Africa DA - 26.6.2017 KW - Civil Engineering KW - Cement KW - Concrete KW - Global engineering KW - Nano engineered materials KW - Sustainability PY - 2017 SN - 978-3-9818270-7-1 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 3 SP - 9 EP - 14 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasiliou, Eleni A1 - Schmidt, Wolfram A1 - Stefanidou, Maria A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas ED - Amziane, Sofiane ED - Sonebi, Mohammed ED - Charlet, Karine T1 - Effectiveness of starch ethers as rheology modifying admixtures for cement based systems N2 - Polysaccharides are important rheology modifying admixtures in the building material sector. The use of starch is becoming increasingly important, due to many ecological and economic advantages. In the construction sector, starch ethers are being used as thickeners and as means to increase the yield stress. The starch ethers that are available on the market differ in their behaviour, which can vary greatly depending upon the binder system and mortar composition, e.g. solid volume content, binder type, additional admixtures. In view of the limited knowledge about the influence of molecular modifications associated with cement based systems, some fundamental rheological functional mechanisms were analysed in this study. The differently modified starch ethers used were derived from potatoes. They varied in their charges and degrees of hydroxypropylation. The setting and the flow behaviour of all examined variations of starch ethers were analysed in cement pastes. In order to illustrate the effects of the starch ethers that were used, the water-cement ratio (w/c) was held constant in all the mixtures [Schmidt 2012]. The results indicated significant differences in setting and flow behaviour. T2 - Second International RILEM Conference on Bio-based Building Materials CY - Clermont-Ferrand, France DA - 21.06.2017 KW - Rheology KW - Polysaccharides KW - Cement KW - Concrete KW - Starch KW - Polycarboxylate PY - 2017 SN - 978-2-35158-192-6 SP - 81 EP - 85 PB - RILEM S.A.R.L CY - Paris, France AN - OPUS4-43548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Uzoegbo, H. Ch. A1 - Schmidt, Wolfram ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Effect of Cassava Starch on Shrinkage Characteristics of Concrete N2 - The use of starch and its derivatives in concrete as an admixture to modify relevant properties of concrete is on the increase in recent times. It is known to modify the rheology, to affect the hydration kinetics of cement, and influence on initial and final setting time of cement. This paper examines the effect of cassava starch on concrete. shrinkage properties of concrete, with and without starch addition, were studied. Various percentages (0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Shrinkage tests were conducted for duration of up to one year. The result show that concretes with starch additions exhibit lower shrinkage, which is an indication the addition of starch as admixture in concrete improves the ability of the concrete reduce shrinkage problems. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cassava KW - Starch KW - Cement KW - Concrete KW - Shrinkage PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 187 SP - 196 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Leinitz, Sarah ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - N., Khachani ED - Saadi, M ED - Aride, J. ED - Nounah, A. T1 - Concrete casting robustness improvement due to active rheology N2 - With ongoing innovation in process technology, the challenges of concrete technology are more and more focused on the rheological optimisation for these processes, since improper mixture stability or poor compaction ability negatively affect the concrete homogeneity and quality. However, along with the increasing complexity of today’s concrete mixture compositions, concrete becomes more prone to failure regarding the casting process. Variable properties of the raw materials typically cause changing workability. The reasons can be found among others in scattering water contents, physical or chemical properties of the cement or varying environmental temperatures. Robustness in the delicately adjusted rheology, however, is of utmost importance for modern and future process technology, from sprayed concrete over pumpable concrete towards 3D-printing, with regard to the long-term strength, the function and the durability. Typically, material induced changes cannot be identified easily due to the complex interactions of concrete constituents. Therefore, a precise and prompt counteraction is impossible. However, it is known that the yield stress can be controlled by addition of supplementary superplasticizer or stabilising agent. In combination with computerized process observation tools that can rapidly interpret and react on changes in the rheology, it is therefore thinkable, that only these two admixture types can adjust the rheology steadily and permanently, regardless of the actual root cause for observed macroscopic rheology change. The presentation will firstly give a comprehensive overview of effects at the interface between pore solution, particles and hydrates, which affect the rheology of fresh concrete. Secondly, ways are recommended how the rheology can be actively manipulated before eventually computerized methods are demonstrated that help to actively and rapidly assess and counteract performance scatter during steady casting processes. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Cusum KW - Rheology KW - Control Chart KW - Concrete KW - Robustness PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444317 SN - 2261-236X VL - 149 SP - 01001-1 EP - 01001-7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -