TY - CONF A1 - Schmidt, Wolfram A1 - Weimann, Christiane A1 - Chaves Weba, Luciana ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Influences of hydration effects on the flow phenomena of concrete with admixtures N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cement hydration KW - Polymer adsorption KW - Rheology KW - Superplasticizer KW - Self-compacting concrete PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 79 EP - 88 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Uzoegbo, H. Ch. A1 - Schmidt, Wolfram ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Effect of Cassava Starch on Shrinkage Characteristics of Concrete N2 - The use of starch and its derivatives in concrete as an admixture to modify relevant properties of concrete is on the increase in recent times. It is known to modify the rheology, to affect the hydration kinetics of cement, and influence on initial and final setting time of cement. This paper examines the effect of cassava starch on concrete. shrinkage properties of concrete, with and without starch addition, were studied. Various percentages (0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Shrinkage tests were conducted for duration of up to one year. The result show that concretes with starch additions exhibit lower shrinkage, which is an indication the addition of starch as admixture in concrete improves the ability of the concrete reduce shrinkage problems. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cassava KW - Starch KW - Cement KW - Concrete KW - Shrinkage PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 187 SP - 196 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan ED - Schmidt, Wolfram T1 - Parameters controlling superplasticizer cement interactions during the casting and hardening of cement based systems N2 - Concrete of today has only little in common with the traditional concrete used a few decades ago. It has become a high performance material, which can be adjusted for high performance applications and according to ultimate user specifications. The reason for the rapid evolvement was the increasing awareness about how the rheology of concrete can be improved without negatively affecting the mechanical properties of concrete by chemical admixtures. T2 - KEYS 2015 - 1st Symposium Knowledge Exchange for Young Scientists CY - Dar es Salaam, Tanzania DA - 09.06.2015 KW - Superplasticizers KW - Rheology KW - Cement hydration KW - Setting PY - 2015 SN - 978-3-9817149-3-7 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 31 EP - 35 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-33578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Beushausen, Hans T1 - Application of a cusum control system for enhanced robustness of the flow properties of self-compacting concrete N2 - Control chart systems are used in quality management systems to keep production processes stable. In concrete production they are often applied for the control of the compressive strength. The most efficient control chart systems are cumulated sums (cusum), which help to observe deviations from a targeted value. Unlike alternative observation chart systems that focus on process data evaluation, cusum observations react very rapidly on systematic process changes in processes. Therefore, the cusum method is particularly suitable if immediate counteractions have to be taken, like in the case of fresh concrete properties of self-compacting concrete (SCC), which can have severe influences on the durability and mechanical strength of concrete. The rheology of SCC can be affected by an enormous variety of influencing factors, from raw material properties to handling or environmental temperature. The present study shows that regardless of the material based influencing parameter for a rheology change, a steady slump flow can be achieved only by adding supplementary superplasticizer in case of loss of flow and adding stabilising agent (ST) in case of increased flow if the respective V-mask indicates a systematic change. A reference SCC was artificially manipulated in order to achieve realistic experimental data for flowability and flowability changes due to changes in the raw material properties. The results point out that productions with applied cusum methods were capable of keeping the target slump flow deviation within approximately 1% only, while productions without applied cusum method deviated up to 14% and more from the target. T2 - fib Symposium 2016. Performance-Based Approaches for Concrete Structures. CY - Cape Town, South Africa DA - 21.11.2016 KW - Concrete KW - Self-compacting concrete KW - cusum KW - control chart KW - quality control KW - robustness PY - 2016 SN - 978-2-88394-121-2 SP - 106-1 EP - 106-10 PB - Fédération internationale du béton ( fib) CY - Lausanne, Switzerland AN - OPUS4-40976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bessaies-Bey, H. A1 - Khayat, K. H. A1 - Palacios, M. A1 - Schmidt, Wolfram A1 - Roussel, N. T1 - Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology N2 - Viscosity modifying agents (VMAs) are essential ingredients for the production of flowable cement-based materials. This paper presents an overview of commonly used VMAs and attempts to shed some light on the underlying physics at the origin of their mechanisms of action. The main molecular parameters of VMA controlling the rheological properties of the cement pore solution are highlighted. As the mechanisms of action of VMAs in cement-based materials are closely related to their affinity with the surface of cement particles, the adsorption of the main VMA types is discussed. The effect of VMAs on flow properties and stability of cement-based materials is presented for VMAs added without any superplasticizer, and then in systems incorporating both VMAs and superplasticizers. Finally, the effect of VMAs in enhancing concrete properties to secure adequate performance of different construction applications, and perspectives for future developments of novel cement-based materials made with VMAs are showcased. KW - Viscosity modifying agents KW - Cement KW - Stability KW - Rheology KW - Working mechanism KW - Compatibility PY - 2022 DO - https://doi.org/10.1016/j.cemconres.2021.106646 VL - 152 SP - 1 EP - 20 PB - Elsevier AN - OPUS4-58396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, S. C. A1 - Ebell, Gino A1 - Van Zijl, G. P. A. G. A1 - Schmidt, Wolfram ED - Schlangen, E. ED - Sierra Beltran, M.G. ED - Lukovic, M. ED - Ye, G. T1 - Cracked and uncracked SHCC specimens under different exposure conditions N2 - This paper describes the fibre-reinforced strain hardening cement-based composite (SHCC) performance under various exposure conditions. Cracked and uncracked SHCC beam specimens were subjected to cyclic wetting and drying under chloride exposure to observe the time of depassivation and corrosion potential of the imbedded reinforcement. Two reference mortars, one of the same strength class as the SHCC (Mortar 1) and the other of high strength class (Mortar 2) were used under the same conditions. Finally, tests for determining the rapid chloride migration coefficient, electrical resistivity, capillary water absorption and freezethaw were also performed to observe the corrosion probability and diffusion rate in uncracked SHCC and mortars. T2 - SHCC3 - 3rd International RILEM conference on strain hardening cementitious composites CY - Dordrecht, The Netherlands DA - 03.11.2014 KW - Depassivation KW - SHCC corrosion crack KW - Lochkorrosion KW - Betonstahl PY - 2014 SN - 978-2-35158-150-6 SN - 978-2-35158-151-3 SP - 25 EP - 32 AN - OPUS4-32462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Wend, Dirk A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - The influence of superplasticiser modifications on early hydration processes N2 - Self-compacting concrete (SCC) differs substantially from normal concrete as regards the quantity of superplasticiser dosage. The functionality of superplasticisers, based on the polycarboxylate ether (PCE) superplasticiser customary with SCC, is nowadays very well understood at construction material research level. However, knowledge concerning pertinent correlations does not always permeate practice to an equal extent. PCEs are extremely polymorphic as opposed to earlier superplasticiser groups, which still possess a considerable proportion of the superplasticiser market. The geometry of polymers can be adjusted individually to performance characteristics required for certain uses. Yet, in selecting a superplasticiser for its specified rheological properties, a very strong influence can equally be exerted simultaneously on the subsequent hydration process. The charge density of the PCE employed also plays a key role in connection with both rheology and early hydration. KW - Rheology KW - Early cement hydration KW - Polycarboxylate ether vicat KW - Shrinkage PY - 2012 SN - 1437-9023 VL - 4 SP - 64 EP - 69 PB - ad-media-Verl. CY - Köln AN - OPUS4-26355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Workability and mechanical properties of ultrafine cement based grout for structural rehabilitation: A parametric study on the partial replacement with SCMs N2 - Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Grouting KW - Repair KW - Box-Behnken KW - Supplementary cementitious materials KW - Analysis of variance PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464769 DO - https://doi.org/10.1051/matecconf/201819907006 SN - 2261-236X VL - 199 SP - 07006-1 EP - 07006-7 PB - MATEC Web of Conferences AN - OPUS4-46476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, K. A1 - Schmidt, Wolfram A1 - Mezhov, Alexander T1 - Influence of the hydroxypropylation of starch on its performance as viscosity modifying agent N2 - Synopsis: Starch is a commonly used viscosity modifying agent (VMA). The performance of starch as VMA depends on its origin (e.g. potato, corn, cassava, etc.) and corresponding molecular properties, such as molecular weight, ratio between amylose and amylopectin etc. Depending upon the application, the efficiency of starch can be enhanced by hydroxypropylation. The maximum degree of substitution (DoS) cannot be greater than 3.0, which is the number of hydroxy groups per glucose monomer in the polymer. In the current research three potato starches exhibiting the DoS of 0.4, 0.6 and 0.8 were utilised. The influence of the modified starch on the rheological properties and hydration of cement paste, as well as the viscosity of the pore solution were investigated. Our findings show that the starch with the highest DoS increases the dynamic yield stress the most, while the plastic viscosity is less dependent on the DoS. Additionally, starch with the highest DoS retards hydration to lower degree than other starches. T2 - 13th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Milan, Italy DA - 10.07.2022 KW - Potato starch KW - Rheological KW - Cement hydration KW - Pore solutions PY - 2022 DO - https://doi.org/10.14359/51736074 VL - 354 SP - 209 EP - 218 PB - ACI Special Publications AN - OPUS4-58320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Schmidt, Wolfram A1 - Astorg, Adéle A1 - Kühne, Hans-Carsten A1 - Brouwers, H.J.H. T1 - Rheological properties of microsilica and sodium aluminate based one-part geopolymers compared to ordinary Portland cement T2 - 5th International Conference Non-Traditional Cement & Concrete CY - Brno, Czech Republic DA - 2014-06-16 KW - Alkali-activated binders KW - One-part geopolymers KW - Rheology PY - 2014 SN - 978-80-214-4867-4 SP - 71 EP - 74 AN - OPUS4-31159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Long-term mechanical and shrinkage properties of cementitious grouts for structural repair N2 - Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Grout KW - Long-term shrinkage KW - Micro silica KW - Fly ash KW - Metakaolin PY - 2019 DO - https://doi.org/10.21809/rilemtechlett.2019.82 SN - 2518-0231 VL - 4 SP - 9 EP - 15 PB - RILEM Publications SARL CY - 4 avenue du Recteur Poincaré, 75016 Paris, France AN - OPUS4-48712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines A1 - Breitschaft, G. A1 - Virchow, S. ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - Khachani, N. ED - Saadi, M. ED - Aride, J. ED - Nounah, A. T1 - Challenges of the growing African cement market – environmental issues, regulative framework, and quality infrastructure requirements N2 - The African cement, concrete and construction business is growing at rapid pace. The cement sales are expected to grow rapidly until 2050. The number of newly built cement plants increases dramatically and in addition more cements are being imported from outside the continent, e.g. from Turkey, Pakistan, Indonesia, and China, driven by overcapacities in the countries of origin. This causes a high number of potentials and challenges at the same time. Newly built cement plants can operate directly at best technological state of the art and thus incorporate more sustainable technologies as well as produce new and more sustainable products such as cements blended with sustainable supplementary cementitious materials such as calcined clays, and industrial or agricultural by products. At the same time the new variety of binding agent as well as the international imports, which are driven by price considerations, make the cement market prone to quality scatter. This puts pressure on the quality control regulations and institutions to ensure safety of construction, healthy application, and environmental safety for the population. The paper presents possible solutions to build up the rapidly increasing African cement production more sustainably than in the rest of the world as well as the related challenges and obstacles that need to be overcome. Based on experiences with a series of pan-African cement testing laboratory proficiency schemes conclusions are made on technical, regulative and political level. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Quality Infrastructure KW - Africa KW - Proficiency Testing KW - Cement KW - Admixtures PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444330 DO - https://doi.org/10.1051/matecconf/201814901014 SN - 2261-236X VL - 149 SP - 01014-1 EP - 01014-8 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Leinitz, Sarah ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - N., Khachani ED - Saadi, M ED - Aride, J. ED - Nounah, A. T1 - Concrete casting robustness improvement due to active rheology N2 - With ongoing innovation in process technology, the challenges of concrete technology are more and more focused on the rheological optimisation for these processes, since improper mixture stability or poor compaction ability negatively affect the concrete homogeneity and quality. However, along with the increasing complexity of today’s concrete mixture compositions, concrete becomes more prone to failure regarding the casting process. Variable properties of the raw materials typically cause changing workability. The reasons can be found among others in scattering water contents, physical or chemical properties of the cement or varying environmental temperatures. Robustness in the delicately adjusted rheology, however, is of utmost importance for modern and future process technology, from sprayed concrete over pumpable concrete towards 3D-printing, with regard to the long-term strength, the function and the durability. Typically, material induced changes cannot be identified easily due to the complex interactions of concrete constituents. Therefore, a precise and prompt counteraction is impossible. However, it is known that the yield stress can be controlled by addition of supplementary superplasticizer or stabilising agent. In combination with computerized process observation tools that can rapidly interpret and react on changes in the rheology, it is therefore thinkable, that only these two admixture types can adjust the rheology steadily and permanently, regardless of the actual root cause for observed macroscopic rheology change. The presentation will firstly give a comprehensive overview of effects at the interface between pore solution, particles and hydrates, which affect the rheology of fresh concrete. Secondly, ways are recommended how the rheology can be actively manipulated before eventually computerized methods are demonstrated that help to actively and rapidly assess and counteract performance scatter during steady casting processes. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Cusum KW - Rheology KW - Control Chart KW - Concrete KW - Robustness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444317 DO - https://doi.org/10.1051/matecconf/201814901001 SN - 2261-236X VL - 149 SP - 01001-1 EP - 01001-7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezhov, Alexander A1 - Schmidt, Wolfram A1 - Zhang, H. A1 - Diesendruck, Ch. E. T1 - The effect of the charge density of a comb polyphosphate superplasticizer on the structural build-up of cement paste N2 - Synopsis: Lately, there has been rising attention to superplasticizers (SP) based on polyphosphate esters. However, the influence of the molecular structure of the polyphosphate polymers on time-dependent properties such as structural build-up has not been examined yet intensively. To investigate this effect, three comb polyphosphate superplasticizers with different charge densities were synthesised by free radical polymerisation. Our findings indicate that SP with the lowest and medium charge densities extend the induction period more strongly than the SP with the highest charge density. The reduction of the structural build-up rate is linearly dependent on the dosage and concentration of the functional group of polyphosphate SP in the cementitious system. This study proposes a mathematical equation expressing the relationship between the structural build-up rate during the induction period and the molecular structure of the polyphosphate SP. T2 - 13th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Milan, Italien DA - 10.07.2022 KW - Admixture KW - Superplasticizer KW - Polyphosphate KW - Structural build-up PY - 2022 DO - https://doi.org/10.14359/51736079 VL - 354 SP - 255 EP - 262 PB - ACI Special Publications AN - OPUS4-58321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kühne, Hans-Carsten A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan T1 - SPIN - Spearhead Network for Innovative, Clean and Safe Cement and Concrete Technologies N2 - Globally, cement and concrete experts are at the cutting-edge to sustainable, green, healthy but nonetheless high-performance concrete. Today concrete is not yet well established in Africa, which offers the unique opportunity to build up a cement and concrete market based on the highest available state of technology. As this industry needs high level expertise, a central issue in implementation of skilled technology is crosslinking research institutions and laboratories. It should not be neglected that concrete is a product with low transport ranges. This means that an improved concrete market mainly supports the local economy without exceeding financial drains to the international market. Thus it fosters the fight against poverty, which is an urgent need in most African countries. The project aims to cross-link experts with industry and policy making bodies, aiming to establish sustainable cement and concrete construction in Africa. KW - High-performance concrete KW - Cement technologies KW - Concrete technologies KW - Sustainable development PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-387428 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1 EP - 3 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476748 DO - https://doi.org/10.21809/rilemtechlett.2018.83 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barucker-Sturzenbecher, Meike A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Learning from the future - How children of Mukuru fancy the city of tomorrow N2 - Sustainability means meeting the needs of today without compromising the needs of the next generations. How can we meet the needs of the next generations, if we do not even know what these needs are? If we do not listen to the next generation and learn from them? Do we even meet the needs of today for everyone on earth? T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urban planning KW - Concrete KW - Mukuru KW - Africa KW - Sustainability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484832 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 194 EP - 197 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Engineering skill requirements to cope with the local and global challenges of the future N2 - In the 21st century, adequate habitat and functioning infrastructure are critical for global societal and economic stability. In addition, growing urbanisation and environmental pollution cause challenges to societies. With increasing velocity, humanity faces that the current way of living is not sustainable. Thus, habitat,infrastructure, urbanisation, environment and sustainability are definitively among the most striking challenges of the 21st century. By consulting, planning, building, maintaining, exploiting and processing of global resources, civil engineers contribute significantly to the existence of these challenges. This is a high responsibility, but due to the heavy involvement, together with adjacent disciplines such as architecture, geosciences, chemistry, physics, environmental sciences and economics, civil engineers also hold the key to mitigate these challenges and provide a brighter global future. Solutions towards greener, more sustainable and economically viable materials do exist, and there is ongoing research on how greener technologies can contribute to better livelihood and economic growth, but their level of implementation is limited, a major reason for which is that these approaches require more fundamental understanding rather than standard application. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Civil Engineering KW - Education KW - Sustainability KW - Materials KW - Sciences PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484895 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 16 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Anniser, J. A1 - Manful, K. ED - Schmidt, Wolfram T1 - A sustainability point of view on horizontal and vertical urban growth N2 - In many regions of the world the urbanisation process is accelerating dramatically. This puts pressure on urban planners but also politics to develop strategies for sustainable city growth. With the rapidly increasing demand for living space in urban areas, cities typically grow vertically. This is largely driven by real estate markets and sometimes also by the desire for status symbols. Certainly, vertical urban growth makes sense, when horizontal growth destroys important flora and Fauna (e.g. in rain forest regions), but in many cases vertical growth is result of real-estate business and Expansion limitation due to state or country borders. However, economics and borders are made by humans. They follow human-made rules. Gravity does not. Therefore, from a point of view of sustainable materials and resourceuse, the trending vertical growth of cities may come under scrutiny. The following aspects should be considered, when a decision is taken between a new quarter with limited number of storeys or a new skyscraper. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urbanisation KW - Construction KW - Materials KW - Sustainability KW - Carbon emissions PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484848 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 189 EP - 193 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Umeche, E. L. A1 - Schmidt, Wolfram A1 - Uzoegbo, H. Ch. ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - A survey and analysis of locally available cements in South Africa N2 - South Africa and recently Nigeria are the only net exporter of cement in Africa, yet cements are imported into the country mainly on the basis of price competitiveness. This poses potential for scatter in the properties of the cements in the South African market as pricing seems to be the only determining factor that affects Portland cements imported. A survey of cements of grade 42.5N in the South African cement market was carried out to identify major players in the industry. The identified cements, which included four locally produced and one imported cement were then analysed for both chemical composition and physical properties in line with the Eurocode EN 196. Tests carried out include loss on ignition, chloride content, sulphate content, specific surface (Blaine), standard consistence, initial setting time, final setting time, soundness and flexural and compressive strength at 2, 7 and 28 days. The testing program was initiated as part of on-going Africa-wide cement testing competency program in partnership with BAM and PTB in Germany. The performance of the identified cements from the different local manufacturers and the imported cement were analysed and are presented in this paper. These results reveal some similarities and differences in the properties. Particularly of interest is the marked difference in the 28 days compressive strength of the cements. This paper shows that there is need for further tests across the cement industry as some of the cements failed to meet certain requirement as set by EN 196. The paper also recommends the use of proficiency testing schemes in the cement industry of the country to ensure the cement laboratories are providing results of high quality and at the same time act as a check to make sure these laboratories are not failing to meet standard requirements. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cement KW - Proficiency testing KW - EN 196 KW - Standards KW - South Africa PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 91 EP - 98 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -