TY - CONF A1 - Schmidt, Wolfram A1 - Weimann, Christiane A1 - Chaves Weba, Luciana ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Influences of hydration effects on the flow phenomena of concrete with admixtures T2 - Advances in Cement and Concrete Technology in Africa N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cement hydration KW - Polymer adsorption KW - Rheology KW - Superplasticizer KW - Self-compacting concrete PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 79 EP - 88 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Uzoegbo, H. Ch. A1 - Schmidt, Wolfram ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Effect of Cassava Starch on Shrinkage Characteristics of Concrete T2 - Advances in Cement and Concrete Technology in Africa N2 - The use of starch and its derivatives in concrete as an admixture to modify relevant properties of concrete is on the increase in recent times. It is known to modify the rheology, to affect the hydration kinetics of cement, and influence on initial and final setting time of cement. This paper examines the effect of cassava starch on concrete. shrinkage properties of concrete, with and without starch addition, were studied. Various percentages (0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Shrinkage tests were conducted for duration of up to one year. The result show that concretes with starch additions exhibit lower shrinkage, which is an indication the addition of starch as admixture in concrete improves the ability of the concrete reduce shrinkage problems. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cassava KW - Starch KW - Cement KW - Concrete KW - Shrinkage PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 187 SP - 196 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Wolf, Julia A1 - Schmidt, Wolfram A1 - Rogge, Andreas T1 - Einsatzmöglichkeiten der Schallemissionsanalyse im Bauwesen T2 - Tagungsband zum 8. Symposium Experimentelle Untersuchungen von Baukonstruktionen N2 - Die Schallemissionsanalyse (SEA) ist ein passives zerstörungsfreies Prüfverfahren. mit dem Rissbildung, Risswachstum und andere Gefügeveränderungen delektiert und lokalisiert werden können. Anhand von zwei Beispielen aus der Forschung der Bundesanstalt für Materialforschung und -prüfung (BAM) wird gezeigt welche Möglichkeiten die SEA beim Bauwerksmonitoring und bei der Untersuchung von Baustoffen bietet. Im ersten Beispiel wird die Ortung von Schallemissionen zur Verfolgung des Risswachstums in Beton eingesetzt. Weiterhin wird mit Zugversuchen an Faserbeton illustriert, dass mit der SEA Versagensmechanismen identifiziert werden können. T2 - 8. Symposium Experimentelle Untersuchungen von Baukonstruktionen CY - Dresden, Germany DA - 24.09.2015 KW - Schallemission KW - SHCC PY - 2015 SN - 1613-6934 N1 - Serientitel: Schriftenreihe Konstruktiver Ingenieurbau Dresden – Series title: Schriftenreihe Konstruktiver Ingenieurbau Dresden VL - 40 SP - 61 EP - 72 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-34581 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan ED - Schmidt, Wolfram T1 - Parameters controlling superplasticizer cement interactions during the casting and hardening of cement based systems T2 - Proceedings of the 1st symposium knowledge exchange for young scientists (KEYS) N2 - Concrete of today has only little in common with the traditional concrete used a few decades ago. It has become a high performance material, which can be adjusted for high performance applications and according to ultimate user specifications. The reason for the rapid evolvement was the increasing awareness about how the rheology of concrete can be improved without negatively affecting the mechanical properties of concrete by chemical admixtures. T2 - KEYS 2015 - 1st Symposium Knowledge Exchange for Young Scientists CY - Dar es Salaam, Tanzania DA - 09.06.2015 KW - Superplasticizers KW - Rheology KW - Cement hydration KW - Setting PY - 2015 SN - 978-3-9817149-3-7 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 31 EP - 35 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-33578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Beushausen, Hans T1 - Application of a cusum control system for enhanced robustness of the flow properties of self-compacting concrete T2 - fib Symposium 2016 - Performance-Based Approaches for Concrete Structures N2 - Control chart systems are used in quality management systems to keep production processes stable. In concrete production they are often applied for the control of the compressive strength. The most efficient control chart systems are cumulated sums (cusum), which help to observe deviations from a targeted value. Unlike alternative observation chart systems that focus on process data evaluation, cusum observations react very rapidly on systematic process changes in processes. Therefore, the cusum method is particularly suitable if immediate counteractions have to be taken, like in the case of fresh concrete properties of self-compacting concrete (SCC), which can have severe influences on the durability and mechanical strength of concrete. The rheology of SCC can be affected by an enormous variety of influencing factors, from raw material properties to handling or environmental temperature. The present study shows that regardless of the material based influencing parameter for a rheology change, a steady slump flow can be achieved only by adding supplementary superplasticizer in case of loss of flow and adding stabilising agent (ST) in case of increased flow if the respective V-mask indicates a systematic change. A reference SCC was artificially manipulated in order to achieve realistic experimental data for flowability and flowability changes due to changes in the raw material properties. The results point out that productions with applied cusum methods were capable of keeping the target slump flow deviation within approximately 1% only, while productions without applied cusum method deviated up to 14% and more from the target. T2 - fib Symposium 2016. Performance-Based Approaches for Concrete Structures. CY - Cape Town, South Africa DA - 21.11.2016 KW - Concrete KW - Self-compacting concrete KW - cusum KW - control chart KW - quality control KW - robustness PY - 2016 SN - 978-2-88394-121-2 SP - 106-1 EP - 106-10 PB - Fédération internationale du béton ( fib) CY - Lausanne, Switzerland AN - OPUS4-40976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Crasselt, Claudia ED - Ludwig, H.-M. T1 - Einfluss der wässrigen Phase von Zementleim und Polycarboxylatethern auf die Rheologie und die frühe Hydratation von Zement T2 - Tagungsband der 20. Internationalen Baustofftagung ibausil N2 - Die Rheologie von fließfähigen zementären Systemen mit Fließmitteln wird durch eine Vielzahl parallel stattfindender Effekte beeinflusst. Zu diesen Effekten zählen Wechselwirkungen zwischen den Polymeren und Ionen in der Porenlösung, frühe Phasenbildung, zeitabhängige und kompetitive Adsorption zwischen anionischen Polymeren und Sulfationen, Bildung von Phasen in der Porenlösung sowie Morphologieänderungen an Partikeloberflächen. Die frühe Hydratation von Zement, die durch Lösungs- und Fällungsprozesse angetrieben wird, beeinflusst diese Effekte erheblich. Das permanente Ungleichgewicht der Porenlösung führt zu Veränderungen der Partikeloberflächen, welches widerum zur Folge hat, dass rheometrische Messungen dieser Zementleime anfällig für Streuungen sind. Um die Einflüsse aus der Zementhydratation zu minimieren, wurden die rheometrischen Untersuchungen mit Zement in Porenlösung durchgeführt. Die Experimente wurden mit verschiedenen Feststoffvolumenfraktionen durchgeführt und mit den Ergebnissen identischer Systeme mit Wasser anstelle von Porenlösung verglichen. Zusätzlich wurden die gleichen Systeme mit Zugabe von Polycarboxylatethern untersucht. Die Ergebnisse zeigen, dass die Leime mit Wasser niedrigere Werte für Fließgrenze und plastische Viskosität aufweisen, als die Systeme mit Porenlösung. Während die Polymere eine Verminderung der Fließgrenze zur Folge hatte, war die Wirkung von Polymeren auf die plastische Viskosität vernachlässigbar. Zusätzlich wurde die frühe Hydratation unter Verwendung von Wärmeflusskalorimetrie, Rasterelektronenmikroskopie und Nadeleindringtiefe beobachtet. T2 - 20. Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2018 KW - Rheologie KW - Polycarboxylatether KW - Zementleim KW - Fließmittel PY - 2018 SN - 978-3-00-059950-7 VL - 20 SP - 744 EP - 751 PB - F.A. Finger-Institut für Baustoffkunde CY - Weimar AN - OPUS4-45973 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, S. C. A1 - Ebell, Gino A1 - Van Zijl, G. P. A. G. A1 - Schmidt, Wolfram ED - Schlangen, E. ED - Sierra Beltran, M.G. ED - Lukovic, M. ED - Ye, G. T1 - Cracked and uncracked SHCC specimens under different exposure conditions T2 - SHCC3 - 3rd International RILEM conference on strain hardening cementitious composites (Proceedings) N2 - This paper describes the fibre-reinforced strain hardening cement-based composite (SHCC) performance under various exposure conditions. Cracked and uncracked SHCC beam specimens were subjected to cyclic wetting and drying under chloride exposure to observe the time of depassivation and corrosion potential of the imbedded reinforcement. Two reference mortars, one of the same strength class as the SHCC (Mortar 1) and the other of high strength class (Mortar 2) were used under the same conditions. Finally, tests for determining the rapid chloride migration coefficient, electrical resistivity, capillary water absorption and freezethaw were also performed to observe the corrosion probability and diffusion rate in uncracked SHCC and mortars. T2 - SHCC3 - 3rd International RILEM conference on strain hardening cementitious composites CY - Dordrecht, The Netherlands DA - 03.11.2014 KW - Depassivation KW - SHCC corrosion crack KW - Lochkorrosion KW - Betonstahl PY - 2014 SN - 978-2-35158-150-6 SN - 978-2-35158-151-3 SP - 25 EP - 32 AN - OPUS4-32462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Workability and mechanical properties of ultrafine cement based grout for structural rehabilitation: A parametric study on the partial replacement with SCMs T2 - Proceedings of the International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) N2 - Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Grouting KW - Repair KW - Box-Behnken KW - Supplementary cementitious materials KW - Analysis of variance PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464769 DO - https://doi.org/10.1051/matecconf/201819907006 SN - 2261-236X VL - 199 SP - 07006-1 EP - 07006-7 PB - MATEC Web of Conferences AN - OPUS4-46476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, K. A1 - Schmidt, Wolfram A1 - Mezhov, Alexander T1 - Influence of the hydroxypropylation of starch on its performance as viscosity modifying agent T2 - International Concrete Abstracts Portal N2 - Synopsis: Starch is a commonly used viscosity modifying agent (VMA). The performance of starch as VMA depends on its origin (e.g. potato, corn, cassava, etc.) and corresponding molecular properties, such as molecular weight, ratio between amylose and amylopectin etc. Depending upon the application, the efficiency of starch can be enhanced by hydroxypropylation. The maximum degree of substitution (DoS) cannot be greater than 3.0, which is the number of hydroxy groups per glucose monomer in the polymer. In the current research three potato starches exhibiting the DoS of 0.4, 0.6 and 0.8 were utilised. The influence of the modified starch on the rheological properties and hydration of cement paste, as well as the viscosity of the pore solution were investigated. Our findings show that the starch with the highest DoS increases the dynamic yield stress the most, while the plastic viscosity is less dependent on the DoS. Additionally, starch with the highest DoS retards hydration to lower degree than other starches. T2 - 13th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Milan, Italy DA - 10.07.2022 KW - Potato starch KW - Rheological KW - Cement hydration KW - Pore solutions PY - 2022 DO - https://doi.org/10.14359/51736074 VL - 354 SP - 209 EP - 218 PB - ACI Special Publications AN - OPUS4-58320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Schmidt, Wolfram A1 - Astorg, Adéle A1 - Kühne, Hans-Carsten A1 - Brouwers, H.J.H. T1 - Rheological properties of microsilica and sodium aluminate based one-part geopolymers compared to ordinary Portland cement T2 - 5th International Conference Non-Traditional Cement & Concrete (Proceedings) T2 - 5th International Conference Non-Traditional Cement & Concrete CY - Brno, Czech Republic DA - 2014-06-16 KW - Alkali-activated binders KW - One-part geopolymers KW - Rheology PY - 2014 SN - 978-80-214-4867-4 SP - 71 EP - 74 AN - OPUS4-31159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines A1 - Breitschaft, G. A1 - Virchow, S. ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - Khachani, N. ED - Saadi, M. ED - Aride, J. ED - Nounah, A. T1 - Challenges of the growing African cement market – environmental issues, regulative framework, and quality infrastructure requirements T2 - MATEC Web of Conferences N2 - The African cement, concrete and construction business is growing at rapid pace. The cement sales are expected to grow rapidly until 2050. The number of newly built cement plants increases dramatically and in addition more cements are being imported from outside the continent, e.g. from Turkey, Pakistan, Indonesia, and China, driven by overcapacities in the countries of origin. This causes a high number of potentials and challenges at the same time. Newly built cement plants can operate directly at best technological state of the art and thus incorporate more sustainable technologies as well as produce new and more sustainable products such as cements blended with sustainable supplementary cementitious materials such as calcined clays, and industrial or agricultural by products. At the same time the new variety of binding agent as well as the international imports, which are driven by price considerations, make the cement market prone to quality scatter. This puts pressure on the quality control regulations and institutions to ensure safety of construction, healthy application, and environmental safety for the population. The paper presents possible solutions to build up the rapidly increasing African cement production more sustainably than in the rest of the world as well as the related challenges and obstacles that need to be overcome. Based on experiences with a series of pan-African cement testing laboratory proficiency schemes conclusions are made on technical, regulative and political level. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Quality Infrastructure KW - Africa KW - Proficiency Testing KW - Cement KW - Admixtures PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444330 DO - https://doi.org/10.1051/matecconf/201814901014 SN - 2261-236X VL - 149 SP - 01014-1 EP - 01014-8 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Leinitz, Sarah ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - N., Khachani ED - Saadi, M ED - Aride, J. ED - Nounah, A. T1 - Concrete casting robustness improvement due to active rheology T2 - MATEC Web of Conferences N2 - With ongoing innovation in process technology, the challenges of concrete technology are more and more focused on the rheological optimisation for these processes, since improper mixture stability or poor compaction ability negatively affect the concrete homogeneity and quality. However, along with the increasing complexity of today’s concrete mixture compositions, concrete becomes more prone to failure regarding the casting process. Variable properties of the raw materials typically cause changing workability. The reasons can be found among others in scattering water contents, physical or chemical properties of the cement or varying environmental temperatures. Robustness in the delicately adjusted rheology, however, is of utmost importance for modern and future process technology, from sprayed concrete over pumpable concrete towards 3D-printing, with regard to the long-term strength, the function and the durability. Typically, material induced changes cannot be identified easily due to the complex interactions of concrete constituents. Therefore, a precise and prompt counteraction is impossible. However, it is known that the yield stress can be controlled by addition of supplementary superplasticizer or stabilising agent. In combination with computerized process observation tools that can rapidly interpret and react on changes in the rheology, it is therefore thinkable, that only these two admixture types can adjust the rheology steadily and permanently, regardless of the actual root cause for observed macroscopic rheology change. The presentation will firstly give a comprehensive overview of effects at the interface between pore solution, particles and hydrates, which affect the rheology of fresh concrete. Secondly, ways are recommended how the rheology can be actively manipulated before eventually computerized methods are demonstrated that help to actively and rapidly assess and counteract performance scatter during steady casting processes. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Cusum KW - Rheology KW - Control Chart KW - Concrete KW - Robustness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444317 DO - https://doi.org/10.1051/matecconf/201814901001 SN - 2261-236X VL - 149 SP - 01001-1 EP - 01001-7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezhov, Alexander A1 - Schmidt, Wolfram A1 - Zhang, H. A1 - Diesendruck, Ch. E. T1 - The effect of the charge density of a comb polyphosphate superplasticizer on the structural build-up of cement paste T2 - International Concrete Abstracts Portal N2 - Synopsis: Lately, there has been rising attention to superplasticizers (SP) based on polyphosphate esters. However, the influence of the molecular structure of the polyphosphate polymers on time-dependent properties such as structural build-up has not been examined yet intensively. To investigate this effect, three comb polyphosphate superplasticizers with different charge densities were synthesised by free radical polymerisation. Our findings indicate that SP with the lowest and medium charge densities extend the induction period more strongly than the SP with the highest charge density. The reduction of the structural build-up rate is linearly dependent on the dosage and concentration of the functional group of polyphosphate SP in the cementitious system. This study proposes a mathematical equation expressing the relationship between the structural build-up rate during the induction period and the molecular structure of the polyphosphate SP. T2 - 13th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Milan, Italien DA - 10.07.2022 KW - Admixture KW - Superplasticizer KW - Polyphosphate KW - Structural build-up PY - 2022 DO - https://doi.org/10.14359/51736079 VL - 354 SP - 255 EP - 262 PB - ACI Special Publications AN - OPUS4-58321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Schmidt, Wolfram T1 - Analyse von Schallemissionen bei Zugversuchen an hochduktilem Beton T2 - 20. Kolloquium Schallemission - Statusberichte zur Entwicklung und Anwendung der Schallemissionsanalyse N2 - Hochduktiler Beton eröffnet neue Möglichkeiten bei der Instandsetzung von Bauwerken, der Herstellung dünnwandiger Bauelemente oder dem Einsatz von Dämpfungselementen in stoßartig beanspruchten Bauwerken (z.B. in Erdbebengebieten). Die Steigerung der Duktilität kann durch die Zugabe von Kurzfasern erreicht werden. Im Falle einer Rissbildung in der Zementsteinmatrix überbrücken die Fasern den Riss, nehmen die Spannung vollständig auf und stoppen lokal das Risswachstum. Bei weiterer Steigerung der Last reißt die Matrix an anderer Stelle. Auf diese Weise wird die Rissbildung fein verteilt und es werden große Dehnungen erreicht, bevor das Bauteil versagt. Zur Optimierung der Festbetoneigenschaften müssen die Matrixfestigkeit und die Faserart sowie deren Gehalt aufeinander abgestimmt werden. Dabei sind auch die Verarbeitungseigenschaften des Frischbetons zu berücksichtigen. Anhand der Schallemissionen kann die Rissbildung in der Matrix und die Interaktion mit den Fasern analysiert werden. So konnte in ersten Zugversuchen gezeigt werden, dass sich Schallereignisse dem Versagen der Zementsteinmatrix bzw. dem Auszug der Fasern aus der Matrix zuordnen lassen. Damit steht zur Beurteilung des mechanischen Verhaltens von hochduktilem Beton neben der Spannungs-Dehnungs-Linie ein weiteres Verfahren zur Verfügung. T2 - 20. Kolloquium Schallemission - Statusberichte zur Entwicklung und Anwendung der Schallemissionsanalyse CY - Garmisch-Partenkirchen, Germany DA - 18.06.2015 KW - SHCC KW - Hochduktiler Beton KW - Schallemission KW - Zugversuch KW - PVA-Fasern KW - Faserverstärkter Beton PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-331920 SN - 978-3-940283-73-3 IS - DGZfP-BB 153 SP - Vortrag 4, 1 EP - 7 AN - OPUS4-33192 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barucker-Sturzenbecher, Meike A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Learning from the future - How children of Mukuru fancy the city of tomorrow T2 - ISEE Africa - Innovation, Science, Engineering, Education N2 - Sustainability means meeting the needs of today without compromising the needs of the next generations. How can we meet the needs of the next generations, if we do not even know what these needs are? If we do not listen to the next generation and learn from them? Do we even meet the needs of today for everyone on earth? T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urban planning KW - Concrete KW - Mukuru KW - Africa KW - Sustainability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484832 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 194 EP - 197 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Engineering skill requirements to cope with the local and global challenges of the future T2 - ISEE Africa - Innovation, Science, Engineering, Education N2 - In the 21st century, adequate habitat and functioning infrastructure are critical for global societal and economic stability. In addition, growing urbanisation and environmental pollution cause challenges to societies. With increasing velocity, humanity faces that the current way of living is not sustainable. Thus, habitat,infrastructure, urbanisation, environment and sustainability are definitively among the most striking challenges of the 21st century. By consulting, planning, building, maintaining, exploiting and processing of global resources, civil engineers contribute significantly to the existence of these challenges. This is a high responsibility, but due to the heavy involvement, together with adjacent disciplines such as architecture, geosciences, chemistry, physics, environmental sciences and economics, civil engineers also hold the key to mitigate these challenges and provide a brighter global future. Solutions towards greener, more sustainable and economically viable materials do exist, and there is ongoing research on how greener technologies can contribute to better livelihood and economic growth, but their level of implementation is limited, a major reason for which is that these approaches require more fundamental understanding rather than standard application. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Civil Engineering KW - Education KW - Sustainability KW - Materials KW - Sciences PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484895 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 16 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Anniser, J. A1 - Manful, K. ED - Schmidt, Wolfram T1 - A sustainability point of view on horizontal and vertical urban growth T2 - ISEE Africa - Innovation, Science, Engineering, Education N2 - In many regions of the world the urbanisation process is accelerating dramatically. This puts pressure on urban planners but also politics to develop strategies for sustainable city growth. With the rapidly increasing demand for living space in urban areas, cities typically grow vertically. This is largely driven by real estate markets and sometimes also by the desire for status symbols. Certainly, vertical urban growth makes sense, when horizontal growth destroys important flora and Fauna (e.g. in rain forest regions), but in many cases vertical growth is result of real-estate business and Expansion limitation due to state or country borders. However, economics and borders are made by humans. They follow human-made rules. Gravity does not. Therefore, from a point of view of sustainable materials and resourceuse, the trending vertical growth of cities may come under scrutiny. The following aspects should be considered, when a decision is taken between a new quarter with limited number of storeys or a new skyscraper. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urbanisation KW - Construction KW - Materials KW - Sustainability KW - Carbon emissions PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484848 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 189 EP - 193 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Umeche, E. L. A1 - Schmidt, Wolfram A1 - Uzoegbo, H. Ch. ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - A survey and analysis of locally available cements in South Africa T2 - Advances in Cement and Concrete Technology in Africa N2 - South Africa and recently Nigeria are the only net exporter of cement in Africa, yet cements are imported into the country mainly on the basis of price competitiveness. This poses potential for scatter in the properties of the cements in the South African market as pricing seems to be the only determining factor that affects Portland cements imported. A survey of cements of grade 42.5N in the South African cement market was carried out to identify major players in the industry. The identified cements, which included four locally produced and one imported cement were then analysed for both chemical composition and physical properties in line with the Eurocode EN 196. Tests carried out include loss on ignition, chloride content, sulphate content, specific surface (Blaine), standard consistence, initial setting time, final setting time, soundness and flexural and compressive strength at 2, 7 and 28 days. The testing program was initiated as part of on-going Africa-wide cement testing competency program in partnership with BAM and PTB in Germany. The performance of the identified cements from the different local manufacturers and the imported cement were analysed and are presented in this paper. These results reveal some similarities and differences in the properties. Particularly of interest is the marked difference in the 28 days compressive strength of the cements. This paper shows that there is need for further tests across the cement industry as some of the cements failed to meet certain requirement as set by EN 196. The paper also recommends the use of proficiency testing schemes in the cement industry of the country to ensure the cement laboratories are providing results of high quality and at the same time act as a check to make sure these laboratories are not failing to meet standard requirements. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Cement KW - Proficiency testing KW - EN 196 KW - Standards KW - South Africa PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 91 EP - 98 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Rübner, Katrin ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Interactions between waste paper sludge ashes and superplasticizers based on polycarboxylates T2 - Advances in Cement and Concrete Technology in Africa N2 - In many industrial nations, about two third of the paper demand is covered by recovered paper. A major process step within the treatment of waste paper is the de-inking. It is a floating process yielding paper sludge as a waste product. About 50 % of this residue is used as a fuel. In several cases it is burnt at temperature of about 850 °C and thereafter the accrued ashes are collected in the flue gas filter. During the combustion, kaolinite and calcium oxide generate gehlenite and larnite. Calcite is the main component of waste paper sludge ash (PA).The chemical and mineralogical composition of PA suggests using it as a supplementary cementitious material. In modern construction materials technology, workability aspects gain importance, since for most modern materials the rheology and compaction ability are relevant for the operation at a hardened state. It was observed that PA significantly increases the water demand of powder systems, which can cause serious problems during the casting of mineral binder systems containing PA. It is therefore obvious that binder systems containing PA might demand for the use of superplasticizers. Superplasticizers are polymers with anionic backbone that cause electrostatic and steric repulsion effects upon adsorption on surfaces of particles and hydration phases. In this paper interactions between superplasticizers and waste paper sludge ashes are discussed and analysed. Based on observations of changes in the zeta potential and the dispersion of the particle system, the influence of the charge density of superplasticizers is observed and time dependent effects are demonstrated. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Waste paper sludge KW - Rheology KW - Cement KW - Concrete KW - Polycarboxylate ether PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 181 EP - 186 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, I. L. A1 - Mbugua, R. A1 - Olonade, K. A. ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Natural rheology modifying admixtures for concrete T2 - Tagungsband zum 26. Workshop und Kolloquium "Rheologische Messungen an Baustoffen" N2 - The possibility to tailor the rheology of concrete eventually opened up the path to new technologies, where design criteria are no longer limited to the compressive strength. Thus, it can be concluded that the capability to control the rheology of concrete can be considered as catalyst for many of today’s concrete innovations. In the same way rheology modifying admixtures will be key to mastering the challenges of the next decades. In many regions of the Southern hemisphere, the effective use of chemical admixtures would significantly contribute to solve problems induced by the challenging climate, but particularly in Africa there is often a lack of local supply and supply infrastructure. In Africa, concrete admixtures are largely shipped or transported from outside the continent. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is no large variety of products available in the market. Due to the enormous relevance of rheology modifying admixtures, it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing and without enormous transportation distances, since these plants are typically regionally abundantly available, cheap, and they are environmental friendly. The paper presents an overview of various options for rheology modifying admixtures, that can be found in Africa, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. T2 - 26. Workshop und Kolloquium "Rheologische Messungen an Baustoffen" CY - Regensburg, Germany DA - 21.02.2017 KW - Concrete KW - Rheology PY - 2017 SN - 978-3-7439-0171-1 SP - 75 EP - 87 PB - tredition GmbH CY - Hamburg AN - OPUS4-40599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -