TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Rogge, Andreas A1 - Kühne, Hans-Carsten T1 - Performance of rice husk ash as an alternative binder in a modified cementitious system with added superplasticizers N2 - Rice husk as (RHA) is an eco-friendly material, which can be used as a supplementary cementitious material (SCM) in cement and concrete. Due to the high water demand for the material, superplasticizers (SPs) are essential to improve the performance. However, the interaction between the SPs and RHA systems is limited. This paper investigates the interaction of the binders with three SPs, i.e. two polycarboxylate ethers (PCEs) and one lignosulphonate (LS). The investigations are performed on blended systems of mortar containing various percentages of RHA and limestone powder (LSP). LSP is used in this research to improve the workability of the mortar. The results from the zeta potential (ZP) shows that the SPs are extremely dependent on the pH of the suspension. At higher pH values such as in a cementitious system, the ZP becomes less negative indicating that the ions in the suspension interact with the carboxyl groups in the backbone of the polymers thus reducing the surface charges of the SP. The mini-slump flow shows that the workability of the blended mortar systems is significantly improved with the addition of SPs. LS systems with increasing RHA is observed to have similar workability as the control mix over time. The compressive strength test results show increased strength for all mortar specimens with added RHA and LSP at later ages. KW - Compressive strength KW - Rice husk ash KW - Superplasticizers KW - Zeta potential KW - Workability PY - 2017 DO - https://doi.org/10.1016/j.cemconcomp.2017.07.014 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 83 SP - 202 EP - 208 PB - Elsevier Ltd. AN - OPUS4-42602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Kanjee, J. A1 - Motukwa, G. A1 - Olonade, K. A1 - Dodoo, A. T1 - A snapshot review of future‑oriented standards for cement, admixtures, and concrete: How Africa can spearhead the implementation of green urban construction materials N2 - The existing cement and concrete standards are not capable of making full use of the current technology capacity due to strong focus on conventional concrete and thus they are not fit for the current and future challenges of construction industry. The paper highlights shortcomings with regard to the implementation of the existing standards. It can be seen that future-oriented standards are generally required to contribute to a lower-carbon footprint of the industry. These changes are significantly more relevant in sub-Saharan Africa, due to the rapidly increasing urbanisation challenge and the enormous potentials to develop lower-carbon technologies than elsewhere in the world. KW - Future‑oriented standards KW - Green urban construction KW - Cement PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582563 DO - https://doi.org/10.1557/s43580-023-00563-9 SN - 2731-5894 VL - 4 IS - 8 SP - 557 EP - 565 PB - Springer International Publishing CY - Springer Nature Switzerland, Cham AN - OPUS4-58256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - von Klitzing, R. A1 - Stephan, D. T1 - Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensions N2 - The interaction of different charged polymers, namely anionic polycarboxylate superplasticizer (PCE) and neutral polyethylene glycol (PEG) with potassium ions, and their effect on the yield stress of highly concentrated glass bead suspension (GBS), were studied under different concentrations of potassium ions ([K+]). It was found that, compared to the neutral PEG, the negatively charged PCE can be adsorbed on glass beads (GB), and then decreases the yield stress of GBS. The increasing concentration of free polymer in the interstitial liquid phase with the increased polymer dosage leads to the higher yield stress of GBS, which may be caused by the higher Depletion force. In addition, this effect is also related to the charge density of the polymer and the [K+] in the solution. Along with the increase in [K+], the yield stress of GBS increases significantly with the addition of PCE, but this cannot be observed with PEG, which indicates that potassium ions can interact with negatively charged PCE instead of the neutral PEG. At last, the interparticle Forces between two single GB with adsorbed PCE in solutions containing [K+] and PCE were measured by colloidal probe atomic force microscopy to better understand the interaction of the charged polymer with counterions. KW - Yield stress KW - Free polymer KW - Charge density KW - Depletion force KW - Potassium ions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506015 DO - https://doi.org/10.3390/ma13071490 SN - 1996-1944 VL - 13 IS - 7 SP - 1490, 1 EP - 1490, 16 PB - MDPI AN - OPUS4-50601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, K. A1 - Mezhov, Alexander A1 - Schmidt, Wolfram T1 - Chemical and thixotropic contribution to the structural build-up of cementitious materials N2 - The structural build-up of fresh cement paste is often considered as a purely thixotropic phenomenon in literature even though cementitious materials undergo a non-reversible hydration process that can have an influence on the structuration process. In the current paper a method is proposed to validate the impact of the non-reversible structural build-up. It is shown that fresh cement paste samples lose their structural gain almost completely due to thixotropy while the structural build-up due to hydration can be observed but occurs in a significantly lower order of magnitude over the course of the first hours of hydration. In addition, it is shown, that the chemical component of the structural build-up accelerates with the onset of the acceleration period of hydration, while its contribution in the entire structural build-up remains constant. KW - Thixotropy KW - Structural build-up KW - Penetration test KW - Rheological properties PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128307 SN - 0950-0618 VL - 345 IS - 128307 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-58248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pott, U. A1 - Crasselt, Claudia A1 - Fobbe, N. A1 - Haist, M. A1 - Heinemann, M. A1 - Hellmann, S. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Lei, L. A1 - Li, R. A1 - Link, J. A1 - Lowke, D. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Nicia, D. A1 - Plank, J. A1 - Reißig, S. A1 - Schäfer, T. A1 - Schilde, C. A1 - Schmidt, Wolfram A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Strybny, B. A1 - Ukrainczyk, N. A1 - Wolf, J. A1 - Xiao, P. A1 - Stephan, D. T1 - Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum –Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of base materials is the prereq- uisite for further research. In this paper, the characterization data of the reference materials (CEM I 42.5 R, limestone pow- der, calcined clay and a mixture of these three components) used in the second funding phase of the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented under the aspects of chemical and min- eralogical composition as well as physical and chemical properties. The data were collected based on tests performed by up to eleven research groups involved in this cooperative program. KW - Portland cement KW - Limestone powder KW - Calcined clay KW - Sustainable cement KW - DFG SPP 2005 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569913 DO - https://doi.org/10.1016/j.dib.2023.108902 VL - 47 SP - 1 EP - 19 PB - Elsevier AN - OPUS4-56991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezhov, Alexander A1 - Zhang, K. A1 - Schmidt, Wolfram T1 - Interactions of Biobased Rheology Modifying Agents with Superplasticizer in Cement Paste N2 - Organic admixtures are an indispensable component of modern concrete. Thus, their purposeful application is not only technically and economically viable but in addition an inevitable tool to make concrete more environmentally friendly. In this context, the use of polysaccharides has increasingly gained interest in the built environment as sustainable resource for performance enhancement. However, due to its origin, biopolymers possess a vast variety of molecular structures which can result in incompatibilities with other polymers present in concrete, such as superplasticizers. The present study highlights effects of the joint application of different types of starches and polycarboxylates with respect to their influence on cement hydration and structural build-up of cement pastes. KW - Polysaccharides KW - Superplasticizers KW - Hydration KW - Cement PY - 2022 DO - https://doi.org/10.4028/www.scientific.net/CTA.1.563 SN - 2674-1237 SP - 563 EP - 568 PB - Trans Tech Publications Ltd, Switzerland CY - Basel, Switzerland. AN - OPUS4-58325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Carvello, J. M. F. A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Fiorotti Peixoto, R. A. T1 - Influence of high-charge and low-charge PCE-based superplasticizers on Portland cement pastes containing particle-size designed recycled mineral admixtures N2 - Design : and use of engineered recycled mineral admixtures obtained from industrial and mineral waste are promising strategies to increase the range of materials suitable for use in cement-based composites. In this work, Portland cement-blended pastes containing mineral admixtures designed for improving particle packing were evaluated in the presence of low- and high-charge polycarboxylate-based superplasticizers. The powders were obtained from basic oxygen furnace slag, iron ore tailings, quartz mining tailings, and quartzite mining tailings. The zeta-potentials of the particles were obtained via electrophoretic mobility. The flow properties were evaluated by rheological tests performed in a Couette type rheometer. The hydration kinetics was evaluated by isothermal calorimetry and an adapted method based on the Vicat needle test. The high-charge PCE and the finer mineral admixtures produced more stable blends. Coarser mineral admixtures led to increased flowability and delayed hydration compared to finer ones. Steel slag powders presented the most significant plasticizer effects, but also the largest setting delays and segregation tendency. Quartz-rich superfines reduced the setting delays caused by the superplasticizers. In summary, both superplasticizers were effective in improving flow properties, but the high-charge PCE was effective in preventing segregation in pastes containing mineral admixtures coarser and heavier than cement. KW - Engineered recycled mineral admixtures KW - Rheology KW - PCE-Based superplasticizer KW - Steel slag KW - Mining tailing PY - 2020 DO - https://doi.org/10.1016/j.jobe.2020.101515 VL - 32 SP - 1 EP - 16 PB - Elsevier AN - OPUS4-58395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cunningham, Patrick A1 - Schmidt, Wolfram T1 - Cement and clinker imports: embodied carbon, carbon costs, and the EU Carbon Border Adjustment Mechanism (CBAM) N2 - When the European Union (EU) Carbon Border Adjustment Mechanism (CBAM) comes into force, importers of Portland cement and clinker will be required to purchase carbon allowances for their goods. Herein, the trade flows into the EU are mapped by country and the equivalent carbon dioxide (CO2-eq) emissions from production is modeled. Using average allowance prices, the additional cost passed to the consumer if carbon allowances had been purchased for imports in the modeled years are estimated. Together, this retrospective analysis provides insights into CBAM and the potential implications of carbon allowances on the cost of imported goods. KW - Carbon border adjustment mechanism KW - Carbon allowances KW - Cost of carbon KW - Cement KW - Impact shifting PY - 2025 UR - https://www.zkg.de/en/artikel/cement-and-clinker-imports-embodied-carbon-carbon-costs-and-the-eu-carbon-border-adjustment-mechanism-cbam-4252088.html SN - 2748-8330 VL - 78 IS - 3 SP - 54 EP - 58 PB - Bauverlag BV GmbH CY - Gutersloh, Germany AN - OPUS4-63333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram T1 - Controlling the mix - Rheology is critical to optimising cement-based compositions N2 - Since the 1980s the range of additives available to modify the behaviour and performance of concrete has greatly expanded. For many applications, control of concrete rheology is critical to obtaining the best performance. The impact of different concrete admixtures on rheology and other factors affecting their selection are discussed. PY - 2015 SN - 0930-3847 IS - 5 SP - 24 EP - 28 PB - Vincentz CY - Hannover AN - OPUS4-33679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Simon, Sebastian A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - C⁠3A passivation with gypsum and hemihydrate monitored by optical spectroscopy N2 - Tricalcium aluminate (C⁠3A) is found with less than 10% wt. of the total composition; however, during hydration, C⁠3A plays an important role in the early hydration of cement in the presence of gypsum as a set retarder. The aim of this investigation is to assess the suitability of optical spectroscopy and a dye-based optical probe to monitor early hydration of C⁠3A in the presence of gypsum and hemihydrate. Optical evaluation was performed using steady-state fluorescence and diffuses reflectance spectroscopy (UV-VisDR). Phase characterization during hydration was done with in-situ X-ray diffraction. UV-VisDR with a cyanine dye probe was used to monitor the formation of metastable phases and was employed together with fluorescence spectroscopy, to follow the Aggregation and disaggregation of the dye during hydration. In conclusion, for the first time, a cyanine dye was identified as a feasible and stable probe to monitor C⁠3A hydration changes in the presence of calcium sulfate. KW - Dye KW - Photoluminescence KW - Fluorescence KW - Reflection spectroscopy KW - Cement KW - Hydration KW - Method development PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106082 VL - 133 SP - 106082 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -