TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476748 DO - https://doi.org/10.21809/rilemtechlett.2018.83 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - von Klitzing, R. A1 - Stephan, D. T1 - Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensions N2 - The interaction of different charged polymers, namely anionic polycarboxylate superplasticizer (PCE) and neutral polyethylene glycol (PEG) with potassium ions, and their effect on the yield stress of highly concentrated glass bead suspension (GBS), were studied under different concentrations of potassium ions ([K+]). It was found that, compared to the neutral PEG, the negatively charged PCE can be adsorbed on glass beads (GB), and then decreases the yield stress of GBS. The increasing concentration of free polymer in the interstitial liquid phase with the increased polymer dosage leads to the higher yield stress of GBS, which may be caused by the higher Depletion force. In addition, this effect is also related to the charge density of the polymer and the [K+] in the solution. Along with the increase in [K+], the yield stress of GBS increases significantly with the addition of PCE, but this cannot be observed with PEG, which indicates that potassium ions can interact with negatively charged PCE instead of the neutral PEG. At last, the interparticle Forces between two single GB with adsorbed PCE in solutions containing [K+] and PCE were measured by colloidal probe atomic force microscopy to better understand the interaction of the charged polymer with counterions. KW - Yield stress KW - Free polymer KW - Charge density KW - Depletion force KW - Potassium ions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506015 DO - https://doi.org/10.3390/ma13071490 SN - 1996-1944 VL - 13 IS - 7 SP - 1490, 1 EP - 1490, 16 PB - MDPI AN - OPUS4-50601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM I 42.5 R used for Priority Program DFG SPP 2005 “Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of starting materials is the precondition for further research, especially for cement, which contains various phases and presents quite a complex material for fundamental scientific investigation. In the paper at hand, the characterization data of the reference cement CEM I 42.5 R used within the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The data were collected based on tests conducted by nine research groups involved in this cooperative program. For all data received, the mean values and the corresponding errors were calculated. The results shall be used for the ongoing research within the priority program. KW - Portland cement KW - Characterization KW - DFG SPP 2005 PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500849 DO - https://doi.org/10.1016/j.dib.2019.104699 SN - 2352-3409 VL - 27 SP - 104699 PB - Elsevier Inc. AN - OPUS4-50084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinborn, Gabriele A1 - Gemeinert, Marion A1 - Schmidt, Wolfram T1 - Vergleich verschiedener Messverfahren zur Partikelgrößenanalyse am Beispiel von nanodispersem ZrO2-Pulver N2 - Fünf verschiedene Messverfahren wurden zur Partikelgrößenanalyse von nanodispersen ZrO₂-Pulver verglichen. Mit der Laserstreulichtanalyse, der dynamischen Lichtstreuung (heterodyne DLS und homodyne DLS-PCS), der Sedimentationsanalyse im Zentrifugalfeld und der Ultraschallspektrometrie wurden wässrige ZrO₂-Suspensionen mit verschiedenen Feststoffkonzentrationen hinsichtlich ihrer Partikelgrößenverteilung analysiert. Als Referenz diente die REM-Analyse zur Ermittlung der Primärpartikelgröße (ca. 40 nm). Mit den hier vorgestellten Messverfahren konnten in den entsprechenden Suspensionen nur Sekundärpartikel im Bereich von 105 nm bis 224 nm detektiert werden, die somit auf das Vorhandensein von Aggregaten bzw. harten Agglomeraten hinweisen. T2 - Tagung, Produktgestaltung in der Partikeltechnologie CY - Berlin, Germany DA - 23.04.2015 KW - Agglomeration KW - Nanopulver KW - Partikelgröße KW - Suspension PY - 2016 DO - https://doi.org/10.1002/cite.201500164 SN - 0009-286 X VL - 88 IS - 7 SP - 984 EP - 994 PB - WILEY-VCH CY - Weinheim AN - OPUS4-36960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühler, M. M. A1 - Hollenbach, P. A1 - Michalski, A. A1 - Meyer, S. A1 - Birle, E. A1 - Off, R. A1 - Lang, Ch. A1 - Schmidt, Wolfram A1 - Cudmani, R. A1 - Fritz, O. A1 - Baltes, G. A1 - Kortmann, G. T1 - The Industrialisation of Sustainable Construction: A Transdisciplinary Approach to the Large-Scale Introduction of Compacted Mineral Mixtures (CMMs) into Building Construction N2 - Abstract: Increasing demand for sustainable, resilient, and low-carbon construction materials has highlighted the potential of Compacted Mineral Mixtures (CMMs), which are formulated from various soil types (sand, silt, clay) and recycled mineral waste. This paper presents a comprehensive inter- and transdisciplinary research concept that aims to industrialise and scale up the adoption of CMM-based construction materials and methods, thereby accelerating the construction industry’s systemic transition towards carbon neutrality. By drawing upon the latest advances in soil mechanics, rheology, and automation, we propose the development of a robust material properties database to inform the design and application of CMM-based materials, taking into account their complex, time-dependent behaviour. Advanced soil mechanical tests would be utilised to ensure optimal performance under various loading and ageing conditions. This research has also recognised the importance of context-specific strategies for CMM adoption. We have explored the implications and limitations of implementing the proposed framework in developing countries, particularly where resources may be constrained. We aim to shed light on socio-economic and regulatory aspects that could influence the adoption of these sustainable construction methods. The proposed concept explores how the automated production of CMM-based wall elements can become a fast, competitive, emission-free, and recyclable alternative to traditional masonry and concrete construction techniques. We advocate for the integration of open-source digital platform technologies to enhance data accessibility, processing, and knowledge acquisition; to boost confidence in CMM-based technologies; and to catalyse their widespread adoption. We believe that the transformative potential of this research necessitates a blend of basic and applied investigation using a comprehensive, holistic, and transfer-oriented methodology. Thus, this paper serves to highlight the viability and multiple benefits of CMMs in construction, emphasising their pivotal role in advancing sustainable development and resilience in the built environment. KW - Decarbonisation KW - Circular economy KW - Recycled materials KW - Demolition wastes KW - Low-carbon construction KW - Building with earth KW - Compressed earth KW - Rammed earth KW - Sustainable construction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583260 DO - https://doi.org/10.3390/su151310677 VL - 15 IS - 13 SP - 1 EP - 25 PB - MDPI AN - OPUS4-58326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiedeitz, M. A1 - Schmidt, Wolfram A1 - Härder, M. A1 - Kränkel, T. T1 - Performance of rice husk ash as supplementary cementitious material after production in the field and in the lab N2 - Supplementary cementitious materials (SCM) can reduce the total amount of Portland cement clinker in concrete production. Rice husk ashes (RHA) can be converted from an agricultural by-product to a high-performance concrete constituent due to a high amount of reactive silica with pozzolanic properties if they are burnt under controlled conditions. The way and duration of combustion, the cooling process as well as the temperature have an effect on the silica form and thus, the chemical and physical performance of the RHA. Various studies on the best combustion technique have been published to investigate the ideal combustion techniques. Yet, the process mostly took place under laboratory conditions. Investigating the difference between the performance of RHA produced in a rural environment and laboratory conditions is useful for the assessment and future enhancement of RHA production, and its application both as building material, for example in rural areas where it is sourced in large quantities, and as additive for high performance concrete. Thus, the paper presents a comparison between RHA produced under rudimentary conditions in a self-made furnace in the rural Bagamoyo, Tanzania and under controlled laboratory conditions at the Technical University of Munich, Germany, with different combustion methods and temperatures. In a second step, RHA was ground to reach particle size distributions comparable to cement. In a third step, cement pastes were prepared with 10%, 20% and 40% of cement replacement, and compared to the performance of plain and fly ash blended cement pastes. The results show that controlled burning conditions around 650 °C lead to high reactivity of silica and, therefore, to good performance as SCM. However, also the RHA burnt under less controlled conditions in the field provided reasonably good properties, if the process took place with proper burning parameters and adequate grinding. The knowledge can be implemented in the field to improve the final RHA performance as SCM in concrete. KW - Rice husk ash KW - Agricultural by-product KW - Supplementary cementitious material KW - Waste management KW - Carbon dioxide emissions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568953 DO - https://doi.org/10.3390/ma13194319 SN - 1996-1944 VL - 13 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-56895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573755 DO - https://doi.org/10.1016/j.mrl.2023.03.004 SN - 2097-0048 VL - 3 IS - 3 SP - 207 EP - 219 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pott, U. A1 - Crasselt, Claudia A1 - Fobbe, N. A1 - Haist, M. A1 - Heinemann, M. A1 - Hellmann, S. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Lei, L. A1 - Li, R. A1 - Link, J. A1 - Lowke, D. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Nicia, D. A1 - Plank, J. A1 - Reißig, S. A1 - Schäfer, T. A1 - Schilde, C. A1 - Schmidt, Wolfram A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Strybny, B. A1 - Ukrainczyk, N. A1 - Wolf, J. A1 - Xiao, P. A1 - Stephan, D. T1 - Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum –Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of base materials is the prereq- uisite for further research. In this paper, the characterization data of the reference materials (CEM I 42.5 R, limestone pow- der, calcined clay and a mixture of these three components) used in the second funding phase of the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented under the aspects of chemical and min- eralogical composition as well as physical and chemical properties. The data were collected based on tests performed by up to eleven research groups involved in this cooperative program. KW - Portland cement KW - Limestone powder KW - Calcined clay KW - Sustainable cement KW - DFG SPP 2005 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569913 DO - https://doi.org/10.1016/j.dib.2023.108902 VL - 47 SP - 1 EP - 19 PB - Elsevier AN - OPUS4-56991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions of polysaccharide stabilising agents with early cement hydration without and in the presence of superplasticizers N2 - Polysaccharides are incorporated into cement based Systems in order to modify the rheological properties. Typically, cellulose ethers, sphingan gums, guar gum or starch ethers are applied. Depending upon their chemistry, molecular architecture, and adsorption tendency, polysaccharides interact differently with the entire cementitious system. Some stabilising agents like diutan gum mainly affect the cementitious paste; other stabilising agents like starch tend to interact with the sand fraction and even with the coarse aggregates. Cellulose and guar gum shows more diverse performances. Typically stabilising admixtures like polysaccharides are used, when sophisticated rheological properties are adjusted. Therefore, polysaccharides are often used in combination with superplasticisers, which are added to reduce the yield stress of concrete. This can cause interactions, particularly when the stabilising Agent shows a strong tendency to adsorb on particle surfaces. Adsorptive stabilising agents may reduce the amount of adsorbed superplasticisers, thus affecting both viscosity and yield stress, while non-adsorptive stabilising agents mainly affect the plastic viscosity independently of the superplasticiser. Due to the strong influence of superplasticisers on the yield stress, influences of the stabilising agent on the yield stress retreat into the background, so that their major effect is an increase of the plastic viscosity. The paper provides a comprehensive overview of how different polysaccharide superplasticisers affect cementitious flowable systems and points out the challenges of the combined use of polysaccharides and superplasticisers. Based on rheometric experiments and observations of the hydration process, time dependent effects on the workability as well as of the hydration of cement are presented and discussed. KW - Concrete KW - Polysaccharides KW - Rheology KW - Stabilising agents KW - Starch KW - Sphingan PY - 2017 DO - https://doi.org/10.1016/j.conbuildmat.2016.11.022 SN - 0950-0618 SN - 1879-0526 VL - 139 SP - 584 EP - 593 PB - Elsevier AN - OPUS4-40597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -