TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this paper presents experimental results about the influence of delayed addition of PCEs on the Hydration of cement and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3A pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less Retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 SP - 1 EP - 8 AN - OPUS4-49104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Becker, S. A1 - Lu, Z. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Stephan, D. A1 - von Klitzing, R. ED - Mechtcherine, V. ED - Khayat, K. ED - Secrieru, E. T1 - Particle Interactions in Silica Systems in Presence of Superplasticizer N2 - The flowability of cement paste is of great importance in today’s construction industry and is influenced by additives such as superplasticizers (SP). One type of SPs are polycarboxylate ether type SPs. These additives electrostatically bind with the negatively charged carboxylic groups at the backbone to the positively charged clinker phases. To model positively charged clinker phases with adsorbed SP, silicon Wafers are pre-coated with cationic polyethylenimine (PEI) and SP is adsorbed onto the coated surface (Si/PEI/SP). Two different polycarboxylate ether type (PCE) SP are compared – one for ready-mix concrete and one for precast concrete. In this preliminary study the interaction forces between Si/PEI/SP surface and a silica microsphere (colloidal probe) are investigated under mild physico-chemical conditions (pH *6, ion concentration <10−5 M) using Colloidal Probe Atomic Force Microscopy (CP-AFM). The interaction force between the model surfaces is attractive for low concentration of SP. The force changes from attractive to repulsive by increasing amount of SP. The force upon approach reveals a biexponential behavior. The exponential decay at large and short surface separations are attributed to electrostatic and steric interactions, respectively. The steric forces of the SP for ready-mix concrete show a steeper onset than the SP for precast concrete. The quantification of these interaction forces will be compared to rheological measurements of similar systems. Furthermore, the parameters will be changed to better approach the conditions in real systems, i.e. higher pH and ionic strength. This helps to understand how the forces on the nanoscale influence the macroscopic rheology. KW - Interfacial forces KW - Silica beads KW - Superplasticizer KW - AFM PY - 2019 SN - 978-3-030-22565-0 U6 - https://doi.org/10.1007/978-3-030-22566-7 SN - 2211-0844 VL - 23 SP - 571 EP - 579 PB - Springer ET - 1 AN - OPUS4-49183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - von Klitzing, R. A1 - Schmidt, Wolfram A1 - Stephan, D. ED - Mechtcherine, V. ED - Khayat, K. ED - Secrieru, E. T1 - Rheological properties of silica beads in the presence of different polymers and electrolyte N2 - Properties of interstitial liquid phase in cement paste, including the species and concentrations of polymers and ion etc., play an important role for the rheological properties of cementitious materials. In order to better understand their effect, an inert model substance, spherical silica beads (SBs) with defined surface and granulometry were used in the presence of electrolytes (CaCl2) and/or different polymers, including polycarboxylate superplasticizer (PCE) and polyethylene glycol (PEG). It was found the presence of Ca2+ greatly increases the viscosity and yield stress of silica beads paste (SBP), which is proportional to the [Ca2+]. For the effect of PCE, the addition of PCE is beneficial to the flowability of SBP, but a high dosage of PCE leads to a reversal effect. Furthermore, the yield stress firstly increases and then decreases with increasing [Ca2+] under the same dosage of PCE. The addition of PEG always increases the yield stress of SBP, regardless of the ion concentration and the presence or not of PCE. KW - Rheological properties KW - Ions KW - Superplasticizer KW - Silica beads PY - 2019 SN - 978-3-030-22565-0 SN - 978-3-030-22566-7 U6 - https://doi.org/10.1007/978-3-030-22566-7_72 SN - 2211-0844 VL - 23 SP - 619 EP - 627 PB - Springer ET - 1 AN - OPUS4-49185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Leinitz, Sarah A1 - Lu, Z. A1 - Becker, S. A1 - Stephan, D. A1 - von Klitzing, R. A1 - Schmidt, Wolfram ED - Mechtcherine, V. ED - Khayat, K. ED - Secrieru, E. T1 - Influence of different accelerators on the rheology and early hydration of cement paste N2 - Special applications like pumping, spraying or printing of concrete require the precise adjustment of very specific rheological properties at different time steps during the casting process. Superplasticizers such as polycarboxylate ethers (PCE) can be used to obtain the required flowability, which, possibly in combination with additional rheology modifying admixtures, generate the required specified consistency. However, after the application, the concrete should change the rheological properties immediately in order to avoid deformations at rest. Therefore, the use of accelerators can be effective. Accelerators influence the hydration of cementitious materials, and thus the rheological properties over the course of time and the setting. In this paper, the influence of different accelerators on the rheology and early hydration of cement paste as well as the interaction of accelerator and PCE are presented. Methods like rheometry, needle penetration tests and practical Tests like spread flow were applied. The used accelerators showed accelerating behavior on the cement pastes without and in the presence of PCE. At the same time an influence on the rheology could be observed. This effect was less in the mixes with PCE, especially at the highest water/cement ratio (w/c). KW - Rheology KW - Cement paste KW - Accelerator KW - Superplasticizer KW - Setting PY - 2019 SN - 978-3-030-22565-0 U6 - https://doi.org/10.1007/978-3-030-22566-7 SN - 2211-0844 VL - 23 SP - 106 EP - 115 PB - Springer ET - 1 AN - OPUS4-49139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Anniser, J. A1 - Manful, K. ED - Schmidt, Wolfram T1 - A sustainability point of view on horizontal and vertical urban growth N2 - In many regions of the world the urbanisation process is accelerating dramatically. This puts pressure on urban planners but also politics to develop strategies for sustainable city growth. With the rapidly increasing demand for living space in urban areas, cities typically grow vertically. This is largely driven by real estate markets and sometimes also by the desire for status symbols. Certainly, vertical urban growth makes sense, when horizontal growth destroys important flora and Fauna (e.g. in rain forest regions), but in many cases vertical growth is result of real-estate business and Expansion limitation due to state or country borders. However, economics and borders are made by humans. They follow human-made rules. Gravity does not. Therefore, from a point of view of sustainable materials and resourceuse, the trending vertical growth of cities may come under scrutiny. The following aspects should be considered, when a decision is taken between a new quarter with limited number of storeys or a new skyscraper. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urbanisation KW - Construction KW - Materials KW - Sustainability KW - Carbon emissions PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484848 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 189 EP - 193 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Long-term mechanical and shrinkage properties of cementitious grouts for structural repair N2 - Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Grout KW - Long-term shrinkage KW - Micro silica KW - Fly ash KW - Metakaolin PY - 2019 U6 - https://doi.org/10.21809/rilemtechlett.2019.82 SN - 2518-0231 VL - 4 SP - 9 EP - 15 PB - RILEM Publications SARL CY - 4 avenue du Recteur Poincaré, 75016 Paris, France AN - OPUS4-48712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Radebe, N. ED - Schmidt, Wolfram T1 - Biased by analytical equipment N2 - Today, in scientific events often a certain separation between researchers from laboratories with highly sophisticated equipment and those from less privileged laboratories can be observed. It is not an uncommon situation that results presented at conferences are rubbished or ridiculed because the investigator only used low-end analytical methods. The assessment of the study is then biased based on the equipment, regardless of the actual quality of the study. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Analytics KW - Africa KW - Bias KW - Science KW - Research PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484877 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 203 EP - 204 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Engineering skill requirements to cope with the local and global challenges of the future N2 - In the 21st century, adequate habitat and functioning infrastructure are critical for global societal and economic stability. In addition, growing urbanisation and environmental pollution cause challenges to societies. With increasing velocity, humanity faces that the current way of living is not sustainable. Thus, habitat,infrastructure, urbanisation, environment and sustainability are definitively among the most striking challenges of the 21st century. By consulting, planning, building, maintaining, exploiting and processing of global resources, civil engineers contribute significantly to the existence of these challenges. This is a high responsibility, but due to the heavy involvement, together with adjacent disciplines such as architecture, geosciences, chemistry, physics, environmental sciences and economics, civil engineers also hold the key to mitigate these challenges and provide a brighter global future. Solutions towards greener, more sustainable and economically viable materials do exist, and there is ongoing research on how greener technologies can contribute to better livelihood and economic growth, but their level of implementation is limited, a major reason for which is that these approaches require more fundamental understanding rather than standard application. T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Civil Engineering KW - Education KW - Sustainability KW - Materials KW - Sciences PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484895 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 16 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Effects and potentials of plant based chemical admixtures on the performance of cementitious construction materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio-based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil-based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfetta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2019 AN - OPUS4-47675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barucker-Sturzenbecher, Meike A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Learning from the future - How children of Mukuru fancy the city of tomorrow N2 - Sustainability means meeting the needs of today without compromising the needs of the next generations. How can we meet the needs of the next generations, if we do not even know what these needs are? If we do not listen to the next generation and learn from them? Do we even meet the needs of today for everyone on earth? T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urban planning KW - Concrete KW - Mukuru KW - Africa KW - Sustainability PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484832 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 194 EP - 197 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -