TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573755 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Ramirez Caro, Alejandra T1 - The action of aggregates on concrete rheology N2 - Most factors acting on concrete rheology work at an extremely small-scale level. Influencing factors in the millimetre or centimetre area are essentially restricted to sand and aggregates. The latter, however, make up 50 to 70% of the total volume of most concretes – a fact often ignored in research on controlling concrete processing properties. Whereas suitably chosen concrete admixtures and additives can influence rheology in a very targeted manner, sand and aggregates are less suitable for controlling rheology but nonetheless contribute to the rheology of the Overall system. The actions of sand and aggregate can impose themselves upon the actions of admixtures and additives and, in unfavourable circumstances, even render them redundant. For this reason, any results concerning the processability of binding agent systems can only be transferred to concrete with great care. It is important to better understand the action of sand and aggregates in order to be able to harmonise them in such a way that they complement the action of superplasticisers positively, instead of working against them. Savings on costs can also be made by this targeted fine-tuning. KW - Rheology KW - Aggregates KW - Viscosity KW - Yield stress KW - Concrete PY - 2018 VL - 3 SP - 42 EP - 49 PB - ad-media GmbH CY - Cologne AN - OPUS4-47045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Alexander, Mark A1 - John, Vanderley T1 - Education for sustainable use of cement based materials N2 - Structural design and application have always been linked to the compressive strength of concrete as the main relevant criterion. This was justifiable in the past, where concrete consisted of water, ordinary Portland cement and aggregates, but this concept is no longer relevant for modern and more sustainable cement and concrete. Despite these new developments, existing standards, guidelines and academic curricula have not been much updated and are still used worldwide. There is a need to change this situation by proper education of the users. This overview describes the challenges that arise at a user Level from the higher complexity of modern concrete, and defines needs and requirements for enhanced applicability of sustainable concrete concepts. Furthermore, recommendations are given on how better concrete practice can be communicated to all the involved parties, from civil and design engineers to constructors and site-appliers on the construction site. KW - Cement KW - Concrete KW - Sustainability KW - Environment KW - Carbon footprint KW - Education KW - Climate PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0008884616307189?via%3Dihub U6 - https://doi.org/10.1016/j.cemconres.2017.08.009 SN - 0008-8846 SN - 1873-3948 VL - 114 SP - 103 EP - 114 PB - Elsevier AN - OPUS4-47673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -