TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Workability and mechanical properties of ultrafine cement based grout for structural rehabilitation: A parametric study on the partial replacement with SCMs N2 - Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Grouting KW - Repair KW - Box-Behnken KW - Supplementary cementitious materials KW - Analysis of variance PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-464769 SN - 2261-236X VL - 199 SP - 07006-1 EP - 07006-7 PB - MATEC Web of Conferences AN - OPUS4-46476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Radlinska, A. A1 - Nmai, C. A1 - Buregyeya, A. A1 - Lai, W.L. A1 - Kou, S. ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Why does Africa need African concrete? An observation of concrete in Europe, America, and Asia - and conclusions for Africa N2 - Portland cement, as we know it today, has its origin in Great Britain approximately 170 years ago. Since then, concrete technology has spread out to Europe, the United States, and Japan, where it became a key component for rapid industrial development. Europe, the Unites States and many Asian countries today have developed a high level of technology regarding concrete construction. However, each of them has a unique history and as a result, different “concrete philosophy” depending upon the social, environmental and financial boundary conditions, as well as their evolution throughout the years and local construction traditions. As a result, the word concrete may refer to rather different materials in America, Europe, and Asia. Apart from South Africa, most sub-Saharan African countries cannot look back on a similarly long cement and concrete history. Cement and concrete are rather new materials and not yet well established. This gives African engineers the unique opportunity to learn from past mistakes and to develop a concrete technology, which refers to the best available practice. However, in many sub-Saharan African countries, standards and regulations are adopted (preferably from Europe or the US) without consideration of the historical background of these standards. Although this practice helps saving resources for the implementation, it does not necessarily yield the best result in the African environment, and also from an economic point of view it might come back disadvantageously due to unnecessary overdesigning. By comparing the differing states-of-the-art in North America, Europe, and Asia, this paper emphasizes, how regional conditions determine the practice of concrete technology in the sub-Saharan area. It is therefore important for Africa to develop a unique African concrete technology, which is perfectly fitted to the specific local conditions, even if it may vary distinctively from the established practice elsewhere. The paper concludes that African nations should effort into adapting existing principles that have proved to function well rather than adopting existing standards. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Cement KW - Casting environment KW - Concrete KW - Durability KW - Standards PY - 2013 SN - 978-3-9815360-3-4 SP - 1139 EP - 1147 AN - OPUS4-27767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Priebe, Nsesheye Susan ED - Schmidt, Wolfram T1 - Why Africa can spearhead innovative and sustainable cement and concrete technologies globally N2 - The perception of concrete in the society as well as in the politics is rather negative. This becomes obvious in the fact that the phrase “concrete jungle” has become synonym for hapless living with no perspectives. In politics and research funding, it is also not easy to create a broader audience, since concrete is falsely considered as old-fashioned material that is sufficiently understood today and does not need further considerations, particularly compared to allegedly newer materials. However, particularly since the last two decades the technology has completely changed. Binders of today are no more the same binders as used before, and concrete mixture compositions of today diverge quite significantly from compositions in the past. There is little understanding world-wide about that. This causes that potentials the concrete technology bears are wasted. In the broadly found opinion that concrete is old-fashioned and ugly, it is ignored that architectural sins are not inherent to the material, which actually is extremely versatile and CO2-friendly compared to all other construction materials available. It is also ignored that 98% of the outer Earth’s crust are made of the elements cement and concrete are made from, and therefore it will be an illusion to believe that the complementary 2% can create materials to develop regions and infrastructures in less developed areas in the world. For betterment in Africa the infrastructural development should have highest priority, since poor connections between settlements are responsible for enormous Price increases [2], and urban traffic congestion is responsible for an incredible loss of productivity. It is not unrealistic to assume that earners that are dependent on a car get stuck in traffic about 3-4 hours per day in cities like Lagos, Nairobi or Dar es Salaam. However, the traffic congestions do not only affect the car owners negatively but the living of the entire urban population every day. Besides infrastructure, housing should be the other priority, since a large part of the African population does not live in adequate condition. This is a societal problem, since unequal Distribution of wealth is a major driving force for instability in societies. The latter has a global impact, since 8 many phenomena that can be observed all over the world such as political radicalism, xenophobia, terrorism, and migration can often be linked to instable societies. However, the importance of infrastructure has an even wider range. Most African countries go through a change process recently. In order to strengthen very positive perspectives, the focus in politics and research funding is put on issues such as agriculture, energy, and health, which are without doubt extremely important issues. However, it is typically overlooked that all enhancements in these areas can only become effective, when an infrastructure is created to support the implementation of better concepts. Mobility is the key to a prosperous future, and mobility can only be granted by infrastructural construction activities. Hence, compared to many other regions in the world, cement and concrete technologies have a significantly higher relevance in Africa. T2 - 2nd Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Accra, Ghana DA - 7.6.2016 KW - Cement KW - Concrete KW - Sustainability KW - Carbon dioxide KW - Polysaccharides KW - Cassava KW - Rheology PY - 2016 SN - 978-3-9817853-1-9 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 2 SP - 7 EP - 19 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-40974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bessaies-Bey, H. A1 - Khayat, K. H. A1 - Palacios, M. A1 - Schmidt, Wolfram A1 - Roussel, N. T1 - Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology N2 - Viscosity modifying agents (VMAs) are essential ingredients for the production of flowable cement-based materials. This paper presents an overview of commonly used VMAs and attempts to shed some light on the underlying physics at the origin of their mechanisms of action. The main molecular parameters of VMA controlling the rheological properties of the cement pore solution are highlighted. As the mechanisms of action of VMAs in cement-based materials are closely related to their affinity with the surface of cement particles, the adsorption of the main VMA types is discussed. The effect of VMAs on flow properties and stability of cement-based materials is presented for VMAs added without any superplasticizer, and then in systems incorporating both VMAs and superplasticizers. Finally, the effect of VMAs in enhancing concrete properties to secure adequate performance of different construction applications, and perspectives for future developments of novel cement-based materials made with VMAs are showcased. KW - Viscosity modifying agents KW - Cement KW - Stability KW - Rheology KW - Working mechanism KW - Compatibility PY - 2022 U6 - https://doi.org/10.1016/j.cemconres.2021.106646 VL - 152 SP - 1 EP - 20 PB - Elsevier AN - OPUS4-58396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, K. A1 - Mezhov, Alexander A1 - Schmidt, Wolfram T1 - Thixotropic and chemical structural build-up of cement pastes with superplasticizer under different storage conditions N2 - Synopsis: The paper presents the results of a study on the influence of agitation on the structural build-up of fresh cement pastes using a penetration test. It first presents results about the influence of the penetrating shape’s geometry on the influence on the cement paste specimen. Then, results are shown for the load-deflection curves depending upon time and agitation before testing. Based on the observation of the force required to penetrate the sample, conclusions on the structural build-up can be made. The observations were made over the course of time with samples that were left at rest and partly agitated before testing at different time steps. The setup allows to identify the contribution of the chemical reaction to the structural build-up process. The presence of superplasticizer obviously reduces the load that cement paste can withstand, while the loss of thixotropy is found notably lower than that of neat cement pates T2 - 13th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Milan, Italy DA - 10.07.2022 KW - Thixotropy KW - Superplasticizer KW - Structural build-up KW - Texture analyzer KW - Penetration test PY - 2022 U6 - https://doi.org/10.14359/51736058 VL - 354 SP - 13 EP - 24 PB - ACI Special Publications AN - OPUS4-58324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - The SPIN project N2 - Globally, cement and concrete experts are at the cutting-edge to sustainable, green, healthy but nonetheless high-performance concrete. In the present age, concrete is not yet well established in Africa, which öfters the unique opportunity to build up a cement and concrete market based on the highest available state of technology. As this industry needs high level expertise, a central issue in implementation of skilled technology is cross-linking research institutions and laboratories. It should not be neglected that concrete is a product with comparably low transport ranges, which means that an improved concrete market will mainly support the local economy without exceeding financial drains to the international market, thus fostering the fight against poverty, which is an urgent need in most African countries. The SPIN project highlights recent developments in the field of cement and concrete research with impact on the local and global economy. Challenges, future developments and opportunities for the African construction industry are in the focus. The SPIN project is funded by the European Commission (EC) and supported by the African, Caribbean and Pacific (ACP) Group of States under the project body of the ACP Science and Technology Programme. SPIN is acronym for “Spearhead network for Innovative, Clean and Safe Cement and Concrete Technologies”. The project aims to cross-link experts with industry and policy making bodies, aiming to establish sustainable cement and concrete construction in Africa. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 PY - 2011 SN - 978-3-9814281-4-8 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 5 EP - 9 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573755 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kühne, Hans-Carsten A1 - Schmidt, Wolfram A1 - Meng, Birgit T1 - The influence of temperature on self-compacting concrete in presence of superplasticizer and additional admixtures T2 - 5th International RILEM Symposium on Self-Compacting Concrete CY - Ghent, Belgium DA - 2007-09-03 KW - Influence of temperature KW - Self-compacting concrete KW - SCC KW - Superplaticizer KW - Admixtures PY - 2007 SN - 978-2-35158-050-9 VL - 1 SP - 405 EP - 410 CY - Bagneux, France AN - OPUS4-15897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Wend, Dirk A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - The influence of superplasticiser modifications on early hydration processes N2 - Self-compacting concrete (SCC) differs substantially from normal concrete as regards the quantity of superplasticiser dosage. The functionality of superplasticisers, based on the polycarboxylate ether (PCE) superplasticiser customary with SCC, is nowadays very well understood at construction material research level. However, knowledge concerning pertinent correlations does not always permeate practice to an equal extent. PCEs are extremely polymorphic as opposed to earlier superplasticiser groups, which still possess a considerable proportion of the superplasticiser market. The geometry of polymers can be adjusted individually to performance characteristics required for certain uses. Yet, in selecting a superplasticiser for its specified rheological properties, a very strong influence can equally be exerted simultaneously on the subsequent hydration process. The charge density of the PCE employed also plays a key role in connection with both rheology and early hydration. KW - Rheology KW - Early cement hydration KW - Polycarboxylate ether vicat KW - Shrinkage PY - 2012 SN - 1437-9023 VL - 4 SP - 64 EP - 69 PB - ad-media-Verl. CY - Köln AN - OPUS4-26355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akindahunsi, A. A. A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Iyuke, S.E. ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - The influence of starches on some properties of concrete N2 - Starches and its derivatives are known to exhibit viscosity modifying characteristics. In an ongoing work, the influence of com and cassava starches on some properties of concrete such as compressive strength, heat of hydration and creep are examined. Various percentages (0.0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Preliminary results of compressive strengths showed that both starches have some positive impact (e.g. there was 5.3 % increase in strength due to a 1 % addition of com starch by weight of cement in comparison to the control while cassava starch of the same percentage gave 4.9 % increase in strength) at certain percentages of starch addition to concrete at 28 days. The creep and hydration results shows the starch additions compares well and in some instance performs better. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Starches KW - Concrete KW - Compressive strength KW - Heat of hydration KW - Creep PY - 2013 SN - 978-3-9815360-3-4 SP - 637 EP - 645 AN - OPUS4-27756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -