TY - CONF A1 - Kühne, Hans-Carsten A1 - Schmidt, Wolfram A1 - Meng, Birgit T1 - The influence of temperature on self-compacting concrete in presence of superplasticizer and additional admixtures T2 - 5th International RILEM Symposium on Self-Compacting Concrete T2 - 5th International RILEM Symposium on Self-Compacting Concrete CY - Ghent, Belgium DA - 2007-09-03 KW - Influence of temperature KW - Self-compacting concrete KW - SCC KW - Superplaticizer KW - Admixtures PY - 2007 SN - 978-2-35158-050-9 VL - 1 SP - 405 EP - 410 CY - Bagneux, France AN - OPUS4-15897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Rogge, Andreas A1 - Kühne, Hans-Carsten ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Optimising available resources for production of good concrete properties T2 - Advances in Cement and Concrete Technology in Africa N2 - There is a wide range of research worldwide on supplementary cementitious materials (SCMs) such as fly ash and slag for substituting pure cement. Such materials are suitable to be considered in a cementitious system with ordinary Portland cement (OPC) due to their high pozzolanic properties. In addition, majority of the SCMs are said to significantly improve concrete properties especially in terms of increased strength and durability. Unfortunately, the production of such SCMs is not entirely eco-friendly and also limited to certain parts of the world, hence one has to look at alternative options. The issue of availability of resources is a strong concept that is ever-increasing, and the use of more eco-friendly SCMs in a cementitious system is furthermore attractive. Hence this paper addresses the use of eco-friendly SCMs in concrete such as rice husk ash (RHA). Despite the fact that extensive research has been done on this material, its application in a cementitious system to obtain sufficient concrete properties is still rather limited. In a country like Tanzania, high strength concrete construction is applicable in special construction cases but certainly not a high priority. Majority of construction is still undertaken using normal strength concrete. In a ternary cementitious system consisting of OPC, RHA and other readily available resources such as limestone filler (LSF), normal strength concrete can still be produced having good performance and suitable for regular on-site construction. This paper explains a possible application of obtaining sufficient concrete properties from the available resources. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Sub-Saharan Africa KW - Rice husk ash KW - Admixtures KW - Workability KW - Rheology PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 323 EP - 331 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Potentials for sustainable cement and concrete technologies - Comparison between Africa and Europe T2 - Proceedings of the 1st International Conference on Construction Materials for a Sustainable Future N2 - The fundamental knowledge about cement and concrete has made enormous progress over the last decades, and today it would be possible to find optimised sustainable concrete solutions tailored for every given boundary framework and raw material supply. However, this knowledge barely finds implementation into practice despite the urgent global need to minimise carbon emissions and energy consumption. A major reason is that most concrete developments were historically made in the northern hemisphere, where today over-regulations and stagnating market perspectives slow down innovation drive towards higher sustainability. In most African countries, however, sustainable building is simply an urgent real-life problem. The demand for building is enormous, Standard solutions are not an option, and the pool of innovative local raw materials and concrete concepts is enormous. The paper provides a comprehensive comparison between the boundary frameworks of Europe and Africa, and it is explained why local African solutions shall be given priority over imported solutions. Examples of local African concrete solutions are given, and ideas for a rapid implementation are developed. Most of the potentially useful materials such as agricultural ashes, natural and calcined pozzolans, polysaccharides, etc. have not yet been subject to intensive research to date. Therefore, it is not unlikely to assume that with an open mind for non-Standard solutions, combined with creativity and particularly knowledge and awareness, the next generation of innovative and sustainable concretes will be developed and applied on the African continent. Therefore, the conclusion is that particularly the African continent provides the best starting position to develop better and more sustainable concrete solutions than anywhere else in the world. Hence, Africa can become a global pioneer in green cement and concrete technology with impact to the entire world. N2 - Posljednih desetljeća načinjen je golem napredak u temeljnim znanjima o cementu i betonu. Danas bi bilo moguće naći rješenja za optimalni održivi beton primjeren svakom danom okviru i dobavi sirovina. Međutim, takvo znanje jedva da se primjenjuje u praksi unatoč hitnoj globalnoj potrebi smanjenja na najmanju mjeru emisija ugljika i potrošnje energije. Glavni je razlog što je većina razvoja u području betona tijekom povijesti načinjena u sjevernoj hemisferi gdje danas preregulacija i perspektiva stagnirajućeg tržišta usporavaju inovacije ka većoj održivosti. Međutim, u većini afričkih zemalja održiva gradnja jednostavno je hitni problem svakodnevice. Zahtjevi za gradnjom su golemi, obična rješenja nisu opcija, rezerve inovativnih lokalnih sirovina i mogućnosti primjene betona su golemi. U radu se daje sveobuhvatna usporedba graničnih okosnica Europe i Afrike, a objašnjeno je zašto se lokalnim afričkim rješenjima mora dati prioritet pred uvezenim rješenjima. Većina potencijalno korisnih materijala kao što su pepeli iz poljoprivrede, prirodni i kalcinirani pucolani, polisaharidi itd. do danas nisu bili predmetom intenzivnih istraživanja. Stoga nije nevjerojatno pretpostaviti da će se Nova generacija inovativnih i održivih betona razviti i primijeniti na afričkom kontinentu uz otvorenost prema nestandardnim rješenjima i u kombinaciji s kreativnošću i posebno znanjem i sviješću. Stoga je zaključeno da naročito afrički kontinent osigurava najbolju početnu poziciju za razvoj boljih i održivijih betona nego bilo gdje u svijetu. Prema tome Afrika može postati svjetski pionir u tehnologiji zelenoga cementa i betona s utjecajem na cijeli svijet. T2 - 1st International Conference on Construction Materials for a Sustainable Future CY - Zadar, Croatia DA - 19.4.2017 KW - Africa KW - Sustainability KW - Cement KW - Concrete KW - Admixtures KW - Carbon emissions PY - 2017 SN - 978-953-8168-04-8 SP - 829 EP - 835 CY - Zagreb, Croatia AN - OPUS4-40977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Grünewald, S. A1 - Ferrara, L. A1 - Dehn, F. T1 - Design of concrete for high flowability: progress report of fib task group 4.3 T2 - fib Symposium 2015 (Proceedings) - Concrete - Innovation and design N2 - Flowable concretes can differ significantly from traditional vibrated concrete. Concrete types like self-compacting concrete (SCC), ultra high performance concrete (UHPC) and high performance fibre reinforced cementitious composites (HPFRCCs) require novel mix design approaches. This has consequences for the production and the performance in the hardened state. Mix designs for flowable concretes can incorporate a wide variety of innovative admixtures or components: e.g. superplasticisers increase the flowability and allow for significant reduction of the water content, shrinkage compensating admixtures or superabsorbent polymers support sound and damage free curing processes, viscosity modifying admixtures enhance the robustness, and new fibre types allow for sophisticated and tailored structural performance. The new Model Code has limitations regarding the application of flowable concrete, e.g. thresholds for the minimum aggregate size and the maximum strength. Provisions are added to include fibres for structural design. fib Task Group 4.3 aims at facilitating the use of innovative flowable materials for designing concrete structures and considers three aspects of flowable concrete: material properties, production effects and structural boundary conditions and performance. This paper reports about the progress of fib TG 4.3 related to the mix design of flowable concrete and discusses the present state-of-the-art concerning admixtures and robustness. T2 - fib Symposium (Proceedings) - Concrete - Innovation and design CY - Copenhagen, Denmark DA - 18.05.2015 KW - Admixtures KW - Fib model code KW - Fibres KW - Flowable concrete KW - Mix design KW - Robustness PY - 2015 SP - 1 EP - 10 AN - OPUS4-33800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Rheological optimisation for flowable mixture compositions specified for African boundary conditions T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 (Proceedings) N2 - To date concrete technology is not yet well established in sub-Saharan Africa but considering the construction technological challenges of the region, without doubt, concrete will play a major role in future. The social, economic, and geographic boundary conditions distinguish greatly from those that can be found in many other regions of the world, where concrete is considerably well established. Düring the last decades, concrete technology underwent a rapid evolution process, but in most countries, where concrete is already well established, innovations are difficult to be brought into practice, Africa, currently has the opportunity and potential, of directly establishing the best available practice in concrete technology. The conclusion is drawn that self-compacting concrete (SCC) or highly flowable concrete is a reasonable solution for African construction sites. Since on most African construction sites the disadvantageous concreting environment is the most crucial factor for the concrete quality, the outstanding workability properties outweigh any disadvantages of SCC. Based on this consideration, concepts are developed, how to bring about robust SCC cost-efficiently and reliably into practice as pre-mixed dry compound under consideration of local materials such as rice husk ashes, bagasse ashes, natural pozzolans, cassava starch and lignosulphonate. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 KW - Mixture composition KW - Rheology KW - Climatic conditions KW - Admixtures KW - Additions PY - 2013 SN - 978-3-9815360-3-4 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 359 EP - 366 AN - OPUS4-27764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines A1 - Breitschaft, G. A1 - Virchow, S. ED - Diouri, A. ED - Boukhari, A. ED - Ait Brahim, L. ED - Bahi, L. ED - Khachani, N. ED - Saadi, M. ED - Aride, J. ED - Nounah, A. T1 - Challenges of the growing African cement market – environmental issues, regulative framework, and quality infrastructure requirements T2 - MATEC Web of Conferences N2 - The African cement, concrete and construction business is growing at rapid pace. The cement sales are expected to grow rapidly until 2050. The number of newly built cement plants increases dramatically and in addition more cements are being imported from outside the continent, e.g. from Turkey, Pakistan, Indonesia, and China, driven by overcapacities in the countries of origin. This causes a high number of potentials and challenges at the same time. Newly built cement plants can operate directly at best technological state of the art and thus incorporate more sustainable technologies as well as produce new and more sustainable products such as cements blended with sustainable supplementary cementitious materials such as calcined clays, and industrial or agricultural by products. At the same time the new variety of binding agent as well as the international imports, which are driven by price considerations, make the cement market prone to quality scatter. This puts pressure on the quality control regulations and institutions to ensure safety of construction, healthy application, and environmental safety for the population. The paper presents possible solutions to build up the rapidly increasing African cement production more sustainably than in the rest of the world as well as the related challenges and obstacles that need to be overcome. Based on experiences with a series of pan-African cement testing laboratory proficiency schemes conclusions are made on technical, regulative and political level. T2 - 2nd International Congress on Materials & Structural Stability (CMSS-2017) CY - Rabat, Morocco DA - 22.11.2017 KW - Quality Infrastructure KW - Africa KW - Proficiency Testing KW - Cement KW - Admixtures PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444330 DO - https://doi.org/10.1051/matecconf/201814901014 SN - 2261-236X VL - 149 SP - 01014-1 EP - 01014-8 PB - EDP Sciences CY - Les Ulis AN - OPUS4-44433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -