TY - JOUR A1 - Bugel, S. A1 - Hahnel, M. A1 - Kunde, T. A1 - de Sousa Amadeu, Nadar A1 - Sun, Y. A1 - Spieß, A. A1 - Beglau, T. H. Y. A1 - Janiak, C. A1 - Schmidt, B. M. T1 - Synthesis and Characterization of a Crystalline Imine-Based Covalent Organic Framework with Triazine Node and Biphenyl Linker and Its Fluorinated Derivate for CO2/CH4 Separation JF - Materials N2 - A catalyst-free Schiff base reaction was applied to synthesize two imine-linked covalent organic frameworks (COFs). The condensation reaction of 1,3,5-tris-(4-aminophenyl)triazine (TAPT) with 4,4′-biphenyldicarboxaldehyde led to the structure of HHU-COF-1 (HHU = Heinrich-Heine University). The fluorinated analog HHU-COF-2 was obtained with 2,2′,3,3′,5,5′,6,6′-octafluoro-4,4′-biphenyldicarboxaldehyde. Solid-state NMR, infrared spectroscopy, X-ray photoelectron spectroscopy, and elemental analysis confirmed the successful formation of the two network structures. The crystalline materials are characterized by high Brunauer–Emmett–Teller surface areas of 2352 m2/g for HHU-COF-1 and 1356 m2/g for HHU-COF-2. The products of a larger-scale synthesis were applied to prepare mixed-matrix membranes (MMMs) with the polymer Matrimid. CO2/CH4 permeation tests revealed a moderate increase in CO2 permeability at constant selectivity for HHU-COF-1 as a dispersed phase, whereas application of the fluorinated COF led to a CO2/CH4 selectivity increase from 42 for the pure Matrimid membrane to 51 for 8 wt% of HHU-COF-2 and a permeability increase from 6.8 to 13.0 Barrer for the 24 wt% MMM. KW - MOF KW - Filter PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547632 DO - https://doi.org/10.3390/ma15082807 SN - 1996-1944 VL - 15 IS - 8 SP - 1 EP - 18 PB - MDPI AN - OPUS4-54763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenreich, F. A1 - Kathan, M. A1 - Dallmann, A. A1 - Ihrig, S. P. A1 - Schwaar, Timm A1 - Schmidt, B. M. A1 - Hecht, S. T1 - A photoswitchable catalyst system for remote-controlled (co)polymerization in situ JF - Nature Catalysis N2 - The fundamental properties of a polymeric material are ultimately governed by its structure, which mainly relies on monomercomposition and connection, topology, chain length, and polydispersity. Thus far, these structural characteristics are typicallyset ex situ by the specific polymerization procedure, eventually limiting the future design space for the creation of moresophisticated polymers. Herein, we report on a single photoswitchable catalyst system, which enables in situ remote controlover the ring-opening polymerization of l-lactide and further allows regulation of the incorporation of trimethylene carbonateand δ -valerolactone monomers in copolymerizations. By implementing a phenol moiety into a diarylethene-type structure,we exploit light-induced keto–enol tautomerism to switch the hydrogen-bonding-mediated monomer activation reversiblyON and OFF. This general and versatile principle allows for exquisite external modulation of ground-state catalysis of a livingpolymerization process in a closed system by ultraviolet and visible light and should thereby facilitate the generation of newpolymer structures. KW - Polymers PY - 2018 DO - https://doi.org/10.1038/s41929-018-0091-8 SN - 2520-1158 VL - 1 IS - 7 SP - 516 EP - 522 PB - Nature CY - London AN - OPUS4-45407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -