TY - CONF A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Schmid, Thomas A1 - Ostermann, Markus T1 - Development of an online-analysis technique for the determination of plant essential nutrients in soils using XRF and LIBS T2 - Prozessanalytik in der Pharma- und Lebensmitteltechnologie N2 - Currently, there is almost no comprehensive mapping of agricultural cropland because of the lack of fast and affordable mapping methods for important soil properties. Arable land of some hectares in size show a broad range of different nutrient compositions. Because of this heterogeneity wrong fertilization can occur and can cause environmental pollution or lead to smaller harvests and this is simply a waste of resources. The goal of I4S (intelligence for soil) is to develop an integrated system for site-specific soil fertility management. The I4S consortium consists of 10 different institutions, which are testing various sensors for their suitability for the requested applications. Besides the preparation of reference materials, the main task of the Federal Institute for Materials Research and Testing (BAM) in this project is the method development for online-XRF (x-ray fluorescence spectroscopy) and for online-LIBS (laser-induced breakdown spectroscopy) sensor systems. Both methods have the advantage that there is no or only little sample preparation necessary. Each method provides a fast and simultaneous multi-element analysis. Both measurement setups can be utilized for a mobile application which is fundamental for reaching the goals of I4S. Having finally a set of some reference materials, further work will focus on the online-XRF and online-LIBS methods in order to obtain useable calibration models. The calibration models will then be tested using stationary and moving samples. T2 - 12. Kolloquium Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - RFA KW - LIBS KW - Soil KW - Agricultural KW - Online KW - Sensor system PY - 2016 SP - P12, 63 EP - 65 AN - OPUS4-38377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. ED - Ziemann, M. T1 - Raman band widths of anhydrite II reveal the burning history of high-fired medieval gypsum mortars T2 - Book of abstracts and conference programme: 10th international congress on the application of Raman spectroscopy in art and archaeology N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Because of the absence of medieval textbooks, the observation of high-temperature, low-pressure mineral transformations and the correlation of phases coexisting in not hydrated binder relicts in the gypsum matrix to the mineralogy of the raw material and the burning conditions constitute the only source to the historical technological know-how. The CaSO4–H2O system consists of five crystalline phases, which can be discriminated by structural analysis methods, such as Raman spectroscopy, due to obvious differences in their spectroscopic data: gypsum (CaSO4 ⋅ 2 H2O), bassanite (hemihydrate, CaSO4 ⋅ ½ H2O), anhydrite III (CaSO4), anhydrite II (CaSO4), and anhydrite I (CaSO4). Only recently, it was possible to demonstrate that small spectroscopic variations exist also within the relatively large stability range of anhydrite II from approx. 180°C to 1180°C: all Raman bands narrow with increasing burning temperature applied in the synthesis from gypsum powder. The determination of band widths of down to 3 cm-1 and differences between them of a few tenths of a wavenumber is not a trivial task. Thus, this contribution discusses peak fitting and strategies for correction of instrument-dependent band broadening. Raman maps of polished thin sections of gypsum mortars provide access to the burning histories of individual remnant thermal anhydrite grains and enable the discrimination of natural anhydrite originating from the gypsum deposit. This novel analytical method was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for following pyrometamorphic reactions in natural impurities of the raw material. In the presented examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Lower burning temperatures, which leave the accessory minerals in their pristine form, can be traced by measuring the spectra of anhydrite crystalites in grains of firing products and evaluating Raman band widths. Throughout the applications of this analytical method so far, calcination temperatures ranging from approx. 600°C to 900°C were determined. T2 - 10th International Congress on the Application of Raman Spectroscopy in Art and Archaeology CY - Potsdam, Germany DA - 03.09.2019 KW - Raman microspectroscopy KW - High-fired medieval gypsum mortars KW - Raman band width KW - Gypsum dehydration KW - Thermal anhydrite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496204 SP - 36 EP - 37 PB - University of Potsdam CY - Potsdam AN - OPUS4-49620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Heilmann, M. T. A1 - Schmid, Thomas A1 - Maiwald, Michael T1 - Multivariate classification of Raman spectra from synthetic polymers – an approach for the improved detection of microplastics T2 - Tagungsband - 11. Kolloquium Arbeitskreis Prozessanalytik N2 - The increasing pollution of terrestrial and aquatic ecosystems with plastic debris, which leads to the accumulation of microscopic plastic particles of still unknown fate, is an upcoming problem of our time. In order to monitor the degree of contamination and to understand the underlying processes of degradation and internalization of plastic debris, analytical methods are urgently needed, which help to identify and quantify microplastics. Currently, expensive collected and purified materials enriched on filters are investigated by (micro) infrared spectroscopy (FTIR). Few studies using micro-Raman spectroscopy have been published as well. In contrast to FTIR, Raman spectroscopy can handle wet samples, but it suffers from interference of fluorescent materials. Both micro-FTIR- and micro-Raman, always include time consuming scanning and mapping procedures followed by the manual inspection and measurement of selected particles. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Microplastics KW - Mikroplastik KW - Raman-Spektroskopie KW - Polymers KW - Multivariate classification PY - 2015 SP - 80 EP - 81 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eschlböck-Fuchs, S. A1 - Huber, N. A1 - Ahamer, C. M. A1 - Hechenberger, J. G. A1 - Kolmhofer, P. J. A1 - Heitz, J. A1 - Rössler, R. A1 - Demidov, Alexander A1 - Schmid, Thomas A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Pedarnig, J. D. T1 - Application of laser-induced breakdown spectroscopy for the analysis of slags in industrial steel production T2 - Tagungsband – 11. Kolloquium Prozessanalytik N2 - Laser-induced breakdown spectroscopy (LIBS) is a fast and versatile technique for (semi) quantitative element analysis of solids, liquids, gases, and particulate matter. The LIBS method is used for optical sensing in various branches of industrial production. In the contribution we review some of our recent results on LIBS analysis of slags from secondary metallurgy in industrial steel making. Major oxides in steel slags are measured at-line and after homogenization using a calibration-free (CF) method. Two approaches for CF analysis based on the Boltzmann plot method and on the calculation of synthetic spectra are compared for the analysis of quaternary oxides. We also present the research in cooperation with our industrial partners in the process-analytical chemistry network PAC. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Vienna, Austria DA - 30.11.2015 KW - Laser-induced breakdown spectroscopy (LIBS) KW - Process analytical technology KW - Steel slag PY - 2015 PB - Plandruck+ Gesellschaft m.b.H. CY - Wien AN - OPUS4-39005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -