TY - JOUR A1 - Abou-Ras, D. A1 - Caballero, R. A1 - Fischer, C.-H. A1 - Kaufmann, C.A. A1 - Lauermann, I. A1 - Mainz, R. A1 - Mönig, H. A1 - Schöpke, A. A1 - Stephan, C. A1 - Streeck, C. A1 - Schorr, S. A1 - Eicke, A. A1 - Döbeli, M. A1 - Gade, B. A1 - Hinrichs, J. A1 - Nunney, T. A1 - Dijkstra, H. A1 - Hoffmann, V. A1 - Klemm, D. A1 - Efimova, V. A1 - Bergmaier, A. A1 - Dollinger, G. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Rockett, A.A. A1 - Perez-Rodriguez, A. A1 - Alvarez-Garcia, J. A1 - Izquierdo-Roca, V. A1 - Schmid, T. A1 - Choi, P.-P. A1 - Müller, M. A1 - Bertram, F. A1 - Christen, J. A1 - Khatri, H. A1 - Collins, R.W. A1 - Marsillac, S. A1 - Kötschau, I. T1 - Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films N2 - The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 µm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits. KW - Elemental distributions KW - Comparison KW - Depth profiling KW - Chemical mapping KW - Thin films KW - Solar cells KW - Chalcopyrite-type KW - Cu(In,Ga)Se2 PY - 2011 U6 - https://doi.org/10.1017/S1431927611000523 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - 5 SP - 728 EP - 751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-24506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Schmid, T. A1 - Schwarze, M. T1 - Explosion characteristics of mildly flammable refrigerants ignited with high-energy ignition sources in closed systems N2 - For evaluation of explosion scenarios in closed systems involving the mildly flammable refrigerants R1234yf, R1234ze and R32 dependent on the ignition energy, ignitions were carried out in a closed autoclave. A newly developed ignition system was used, which allows generating electric arcs with defined energies in a range between 3 J and 1000 J. The lower explosion limit of R32 decreases with increasing ignition energy. R32-explosions can be more severe than explosions involving highly flammable substances. However, in case of R1234yf and R1234ze, the ignition energy had to be increased to more than 100 J and more than 500 J to detect explosions in the closed system at all, although flame Propagation phenomena can already be observed if these substances are ignited with much weaker ignition sources in open glass tubes. The explosions were very mild with these substances. KW - Flammability limits KW - Explosion severity KW - R1234yf KW - R1234ze KW - R32 KW - Hydrofluoroolefin (HFO) PY - 2018 U6 - https://doi.org/10.1016/j.ijrefrig.2018.04.009 SN - 0140-7007 SN - 1879-2081 VL - 90 SP - 249 EP - 256 PB - Elsevier Ltd and IIR AN - OPUS4-45879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -