TY - JOUR A1 - Kalinka, Gerhard A1 - Sahin, M. A1 - Schlögl, S. A1 - Wang, J. A1 - Kaynak, B. A1 - Mühlbacher, I. A1 - Ziegler, W. A1 - Kern, W. A1 - Grützmacher, H. T1 - Tailoring the interfaces in glass fiber-reinforced photopolymer composites N2 - The present work provides a comparative study on the interface and adhesion properties of surface modified single glass fibers embedded in an acrylate matrix. To facilitate a covalent bonding at the fibermatrix interface, the fibers are functionalized with selected organosilanes that comprise either passive (unsaturated C¼C bonds of methacrylate moieties) or photoactive functionalities (photocleavable bis(acyl)phosphane oxide groups). Immobilization of the functional silanes is carried out by a classic silanization reaction involving a condensation reaction across the surface hydroxyl groups of the inorganic glass fibers. The change of the physico-chemical properties of the fibers due to desizing and subsequent surface modification is monitored by X-ray photoelectron spectroscopy and zeta potential measurements. In addition, scanning electron microscopy is used to follow the changes in surface morphology. After the modification step, the desized and modified single fibers are embedded in a photocurable acrylate resin formulation. By performing single fiber pull-out tests, maximum pull-out force, friction strength and apparent interfacial shear strength are determined as a function of the coupled silanes. The results reveal that the attached organosilanes lead to a significant increase in adhesion strength, whilst the performance of the photo-cleavable organosilane is superior to the passive methacryl-functional derivative. KW - Photocleavable organosilanes KW - Fiber-matrix interface KW - Photopolymer composites KW - Single fiber pull-out test KW - Surface modification PY - 2018 U6 - https://doi.org/10.1016/j.polymer.2018.03.020 SN - 0032-3861 VL - 141 SP - 221 EP - 231 PB - Elsevier Ltd. CY - New York AN - OPUS4-44784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radl, S. A1 - Kreimer, M. A1 - Manhart, J. A1 - Griesser, T. A1 - Moser, A. A1 - Pinter, G. A1 - Kalinka, Gerhard A1 - Kern, W. A1 - Schlögl, S. T1 - Photocleavable epoxy based materials N2 - The present study aims at the development of photodegradable epoxy based materials comprising o-nitrobenzyl ester links that undergo well defined bond cleavage in response to UV irradiation. New bi-functional epoxy based monomers bearing o-nitrobenzyl ester groups are synthesized and thermally cured with an anhydride hardener to yield photosensitive polymers and duromers. The UV induced changes in solubility are exploited for the preparation of positive-type photoresists. Thin patterned films are obtained by photolithographic processes and characterized by microscopic techniques. The results evidence that sensitive resist materials with good resolution and high contrast behavior can be accomplished. Along with resist technology, the applicability of o-nitrobenzyl chemistry in the design of recyclable polymer materials with thicknesses in the millimeter range is evaluated. By monitoring the thermo-mechanical properties upon UV illumination, a distinctive depletion of storage modulus and glass transition temperature is observed with increasing exposure dose. Additionally, single fiber pull-out tests are carried out revealing a significant decrease of the interfacial adhesion at the fiber-matrix interface due to the phototriggered cleavage reaction. KW - Epoxy based network KW - Photocleavage KW - o-Nitrobenzyl ester KW - Adhesion KW - Mechanical properties KW - Interfacial shear strength PY - 2015 U6 - https://doi.org/10.1016/j.polymer.2015.05.055 SN - 0032-3861 SN - 1873-2291 VL - 69 SP - 159 EP - 168 PB - Elsevier Ltd. AN - OPUS4-34566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -