TY - JOUR A1 - Solomun, Tihomir A1 - Schimanski, A. A1 - Sturm, Heinz A1 - Mix, Renate A1 - Illenberger, E. T1 - Surface Modification of Polyamides by Direct Fluorination N2 - Bulk samples and thin films of polyamides (PA6 and PA12) were exposed to fluorine (1 - 10 vol.-% F2 in N2) and analysed with photoelectron (XPS) and infrared spectroscopy. Fluorination affects both, the amide and the hydrocarbon parts of the polymers. However, only the carbon atom next to the carbonyl is readily fluorinated. Chemical modification of the amide group is apparent in a large binding energy shift (+5 eV) of the N1s level and the appearance of a CO band at 1734 cm-1. It is concluded that the amide C-N bond is cleaved in the fluorination process and that COOH and NF2 end groups are formed. This conclusion is corroborated by the appearance of ester oxygen in the XPS and by the 19F NMR spectra of the volatile products that show fluorine signals chemically shifted about 200 ppm towards lower field as compared with the CHF environment. KW - Gasfluorierung KW - IR KW - XPS KW - AFM KW - NF2-Gruppe PY - 2004 UR - http://www.e-polymers.org SN - 1618-7229 IS - 8 SP - 1 EP - 16 PB - De Gruyter CY - [S.l.] AN - OPUS4-3425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Schimanski, A. A1 - Sturm, Heinz A1 - Illenberger, E. T1 - Reactions of amide group with fluorine as revealed with surface analytics N2 - Thin polyamide-6 films were exposed to fluorine gas and analysed with photoelectron and infrared spectroscopies. Fluorine cleaves the amide C–N bond resulting in the formation of the –COOH and –NF2 terminal groups. This is evident from large shifts in the N1s binding energy (+5 eV) and C=O stretching frequency (~80 cm-1), appearance of ester oxygen in the XPS spectra, as well as by the 19F nmr spectra of volatile products consistent with a terminal NF2 group. KW - Gasfluorierung KW - Polyamid-6 KW - XPS KW - IR KW - -COOH und NF2-Gruppen PY - 2004 UR - http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235231%232004%23996109995%23499295%23FLA%23&_cdi=5231&_pubType=J&_auth=y&_acct=C000049503&_version=1&_urlVersion=0&_userid=963821&md5=baea8e0df63660c666921ef377c00e40 SN - 0009-2614 SN - 1873-4448 VL - 378 SP - 312 EP - 316 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-3439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Schimanski, A. A1 - Jäger, Christian A1 - Friedrich, Jörg Florian T1 - Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes N2 - Mixtures of hexamethyldisiloxane (HMDSO) and oxygen have been used for deposition of SiO2-like layers by plasma polymerization under low-pressure conditions onto polyethylene and polystyrene used as basecoat. Water glass was cast onto these 0.5 µm plasma thick siloxane-like layers with a thickness of 5 to 40 µm. The adhesion of these bilayer systems and their flame resistance were tested. The effect of different plasma parameters such as monomer/gas ratio, pressure and power input into the discharge on the deposition rate and the composition of the formed layers was studied. Characterization and chemical composition of the formed films were performed using infrared, X-ray photoelectron and solid state nuclear magnetic resonance spectroscopy. Peel strengths of composites were measured and the locus of peel front propagation was detected. Thermal properties of composites were analyzed by thermo-gravimetric analysis. Finally, the fire-retardant properties of thick coated polymers were determined by exposure to flames and the behavior of coatings on the polymers during flaming was observed visually. KW - Plasma polymerization KW - Hexamethyldisiloxane plasma polymer KW - Polystyrene KW - Polyethylene KW - Flame retardancy PY - 2013 U6 - https://doi.org/10.1016/j.surfcoat.2013.04.039 SN - 0257-8972 VL - 228 SP - 266 EP - 274 PB - Elsevier B.V. CY - Lausanne AN - OPUS4-28735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfuch, A. A1 - Horn, K. A1 - Mix, Renate A1 - Ramm, M. A1 - Heft, A. A1 - Schimanski, A. ED - Suchentrunk, R. T1 - Direct and remote plasma assisted CVD at atmospheric pressure for the preparation of oxide thin films N2 - In this paper the preparation of silicon and titanium oxide thin films using an atmospheric pressure plasma process will be reported. To obtain these oxide films hexamethyldisiloxane and titanium tetraisopropoxide were used as precursor materials. Based on the different chemical reaction mechanisms the film deposition processes were carried out in the direct as well as in the remote PACVD mode. The deposition parameters were varied and the influence on different film properties was studied. The deposited oxide films were characterised by profilometry, ellipsometry, SEM, UV-VIS-NIR-transmission measurements. FT-IR spectroscopy and contact angle measurements. Additionally, first results will be presented concerning the creation of composite films using a combination of plasma and liquid dye nebulization technique. KW - FTIR KW - Ellipsometry KW - Profilometry KW - SEM KW - PACVD KW - Silicon oxide PY - 2010 SN - 978-3-87480-259-8 VL - 66 SP - 114 EP - 124 PB - Eugen G. Leuze CY - Bad Saulgau AN - OPUS4-22798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Schimanski, A. A1 - Sturm, Heinz A1 - Illenberger, E. T1 - Efficient Formation of Difluoramino Functionalities by Direct Fluorination of Polyamides N2 - Efficient formation of difluoramino (NF2) groups within the polymer matrix upon exposure of polyamides (PA6 and PA12) to elemental fluorine is reported. The reaction was assessed on bulk and thin-film samples by means of RA-FTIR (reflection–absorption FTIR), XPS (X-ray photoelectron spectroscopy), and NMR (nuclear magnetic resonance) techniques. Direct fluorination causes cleavage of the amide C–N bond and concomitant formation of the NF2 chain-end functionalities as evident from an exceptionally large shift (+5 eV) of the N 1s binding energy and an increase of the v(CO) frequency by about 80 cm-1. The structural model is supported by the 19F NMR spectra of volatile reaction products that clearly reveal the presence of the NF2 group. PY - 2005 U6 - https://doi.org/10.1021/ma050067c SN - 0024-9297 SN - 1520-5835 VL - 38 IS - 10 SP - 4231 EP - 4236 PB - American Chemical Society CY - Washington, DC AN - OPUS4-22624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -