TY - CONF A1 - Schilder, Constanze T1 - Structure-Integrated Fibre Optic AE Sensor for Concrete Pile Testing and Monitoring T2 - Photonics 2010, International Conference on Fiber Optics and Photonics CY - Guwahati, India DA - 2010-12-11 PY - 2010 AN - OPUS4-22420 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Habel, Wolfgang ED - Liao, Y. ED - Jin, W. ED - Sampson, D.D. ED - Yamauchi, R. ED - Chung, Y. ED - Nakamura, K. ED - Rao, Y. T1 - Experimental qualification and validation of fibre optic strain sensors N2 - Strain sensors used in practical applications must provide reliable measurement data. To achieve this, sensor systems must be validated by using experimental facilities that enable physically independent statements about the performance of the sensor components. The paper describes qualification and validation procedures using a special facility to qualify surface-applied strain sensors and to achieve reliable sensor results. Based on examples concerning fibre optic strain sensor patches with and without FBG sensors, the determination of the strain gauge factor also under combined thermal and mechanical loading will be presented. These results are the basis for development of guidelines and standards. T2 - OFS2012 - 22nd International conference on optical fiber sensors CY - Beijing, China DA - 2012-10-15 KW - Fiber Bragg gratings KW - Sensors PY - 2012 DO - https://doi.org/10.1117/12.968801 SN - 0277-786X SN - 1996-756X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 8421 SP - 1 EP - 4(?) PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-27321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilder, Constanze A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Münzenberger, Sven A1 - Habel, Wolfgang T1 - Experimental qualification by extensive evaluation of fibre optic strain sensors N2 - Fibre optic strain sensors used in practical applications have to provide reliable measurements. Therefore, the applied sensor and the sensor systems must be validated experimentally. This can be achieved with facilities which use physically independent measurement systems in order to avoid the influences caused by the application of a reference sensor. This paper describes the testing methods of the specially developed validation facility KALFOS for the qualification and evaluation of surface-applied strain sensors. For reliable sensor results, the performance of fibre optic strain patches with and without FBG under combined thermal and mechanical loading was investigated. Additionally, the strain gauge factor of the fibre optic strain patches with FBG was determined experimentally and compared to the specified strain gauge factor. These results will be the basis for the development of guidelines and standards concerning the application of the sensors. KW - Evaluation KW - Qualification KW - Strain transfer KW - Fibre optic sensors KW - Fibre Bragg grating KW - Patch KW - Strain gauge KW - Validation facility KW - Laser extensometer KW - Electronic speckle pattern interferometry PY - 2013 DO - https://doi.org/10.1088/0957-0233/24/9/094005 SN - 0957-0233 SN - 1361-6501 VL - 24 IS - 9 SP - 094005-1 EP - 094005-7 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-29424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Kohlhoff, Harald A1 - Hofmann, Detlef A1 - Habel, Wolfgang ED - Boller, C. T1 - Structure-integrated fibre-optic strain wave sensor for pile testing and monitoring of reinforced concrete piles T2 - EWSHM'12 - 6th European workshop on structural health monitoring 2012 CY - Dresden, Germany DA - 2012-07-03 PY - 2012 SN - 978-3-940283-41-2 VL - 1 SP - 523 EP - 530 CY - Berlin AN - OPUS4-26279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Schukar, Marcus A1 - Steffen, Milan A1 - Krebber, Katerina T1 - Structural health monitoring of composite structures by distributed fibre optic sensors N2 - Structural Health Monitoring of composite materials gains in importance with the increasing use of Composite structures for safety-related applications, e.g. in aerospace. Because of the material properties of composites, defects often occur inside the structures and raise the demand for integrated sensors. The advantages of optical fibres predestine them not only for the surface-application on composite structures but also for the Integration into composite structures. Even without quasi-distributed sensors such as FBGs or LPGs, the optical fibre itself can be used to measure the structure and occurring events over the entire fibre length by distributed sensing techniques. This paper presents the surface-application of polyimide coated silica optical fibres onto PEEK specimens and the integration of copper and polyimide coated silica optical fibres into an AS-4/PEEK Composite to be used as distributed fibre optic sensors for SHM. Results from distributed measurements by optical backscatter reflectometry based on Rayleigh backscattering are shown. T2 - 5th International symposium on NDT in aerospace CY - Singapore DA - 13.11.2013 KW - Structural health monitoring (SHM) KW - Composite structures KW - Optical fibre KW - Distributed fibre optic sensors KW - Optical backscatter reflectometry PY - 2013 SN - 1435-4934 SP - 1 EP - 7 AN - OPUS4-29687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Kohlhoff, Harald A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Habel, Wolfgang A1 - Baeßler, Matthias A1 - Niederleithinger, Ernst A1 - Georgi, Steven A1 - Herten, M. ED - Jaroszewicz, L.R. T1 - Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors N2 - Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load Tests and pile integrity tests. T2 - EWOFS 2013 - 5th European workshop on optical fibre sensors CY - Kraków, Poland DA - 19.05.2013 KW - Static load test KW - Dynamic load test KW - Pile integrity test KW - Extrinsic Fabry-Perot interferometer KW - Fibre Bragg grating KW - Structure integrated sensor KW - Fibre optic strain sensor PY - 2013 SN - 978-0-81949-634-8 DO - https://doi.org/10.1117/12.2026813 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 8794 IS - Paper 8794 - 181 SP - 700 EP - 703 AN - OPUS4-28854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Distributed fibre optic sensors for structural health monitoring of composite materials T2 - Industrial Technologies 2014 CY - Athens, Greece DA - 2014-04-09 PY - 2014 AN - OPUS4-30601 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Development and qualification of FBG-based strain patches and rosettes T2 - 8th International Workshop on Structural Health Monitoring - 2011 CY - Stanford, CA, USA DA - 2011-09-13 PY - 2011 AN - OPUS4-27472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Structural health monitoring of composite structures by distributed fibre optic sensors T2 - 5th International Symposium on NDT in Aerospace CY - Singapore DA - 2013-11-13 PY - 2013 AN - OPUS4-29619 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Schukar, Marcus A1 - Steffen, Milan A1 - Krebber, Katerina ED - López-Higuera, J.M. ED - Jones, J. ED - López-Amo, M. ED - Santos, J.L. T1 - Evaluating distributed fibre optic sensors integrated into thermoplastic composites for structural health monitoring N2 - Strain sensors used for structural health monitoring (SHM) must provide reliable measurement data during their entire service lifetime. To achieve this for fibre optic sensors integrated into composites, the integration of the sensor has to be adapted according to the process conditions. This paper describes the fabrication of thermoplastic composite samples with integrated distributed fibre optic sensors (DFOS) based on copper-nickel and polyimide coated silica optical fibres. The performance of these DFOS as SHM sensors is evaluated in terms of reliability by measurements derived from comparative measurements with resistance strain gauges and from fatigue tests with 10 million load cycles. T2 - OFS2014 - 23rd International conference on optical fibre sensors CY - Santander, Spain DA - 2014-06-02 KW - Distributed fibre optic sensor KW - Integrated sensor KW - Reliability KW - Structural health monitoring KW - Strain gauge KW - Optical frequency domain reflectometry KW - Fatigue test PY - 2014 DO - https://doi.org/10.1117/12.2058604 SN - 0277-786X SN - 1996-756X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 9157 SP - 91575Q-1 - 91575Q-4 AN - OPUS4-30861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Schilder, Constanze A1 - Köppe, Enrico A1 - Habel, Wolfgang ED - Chang, F.-K. T1 - Development and qualification of FBG-based strain patches and rosettes N2 - A fibre Bragg grating (FBG) strain patch specially adapted for long-term and high-strain applications was developed and characterised. Additionally, in the case of unknown main stress axis, two fibre optic strain rosettes were developed. The design concept for the patch and the rosettes is based on a glass fibre reinforced plastic (gfrp) carrier material. The patches were characterised due to their strain gauge factor and fatigue behaviour. As a result, FBG strain patches with linear strain behaviour and excellent fatigue resistance were developed and can be used as part of a monitoring system for aerospace structures or wind turbine power plants. The rosettes were designed to be small in geometrical size and their strain transfer behaviour was characterised. T2 - 8th International workshop on structural health monitoring 2011 CY - Stanford, CA, USA DA - 13.09.2011 KW - Fibre Bragg grating KW - Patch KW - Rosette KW - Strain gauge factor KW - Fatigue behaviour KW - Validation PY - 2011 SN - 978-1-60595-053-2 VL - 2 SP - 1457 EP - 1465 PB - DEStech Publications, Inc. AN - OPUS4-24512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Structure-Integrated Fiber-Optic Strain Wave Sensor for Concrete Pile Testing and Monitoring T2 - 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-5) CY - Cancún, Mexico DA - 2011-12-11 PY - 2011 AN - OPUS4-25267 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Structure-Integrated Fibre-Optic Strain Wave Sensor for Pile Testing and Monitoring of Reinforced Concrete Piles T2 - 6th European Workshop on Structural Health Monitoring CY - Dresden, Germany DA - 2012-07-03 PY - 2012 AN - OPUS4-26462 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Bohrpfahlüberwachung mit strukturintegrierten faseroptischen Sensoren N2 - - Zuverlässiger Nachweis der Tragfähigkeit und Strukturintegrität von Bohr- und Rammpfählen - Nur ein Sensor für alle Pfahlprüfmethoden - Umfassendere Aussagen über Boden-Bauwerks-Interaktion und Gebrauchstauglichkeit durch Nutzung von Sensorketten - Langzeitüberwachung tragender Bauwerkselemente T2 - Sensor+Test 2011 CY - Nuremberg, Germany DA - 07.06.2011 PY - 2011 AN - OPUS4-24058 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Bohrpfahlüberwachung mit strukturintegrierten faseroptischen Sensoren T2 - VDI/VDE-Expertenforum 2011 CY - Nuremberg, Germany DA - 2011-06-07 PY - 2011 AN - OPUS4-24059 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Hofmann, Detlef A1 - Kohlhoff, Harald A1 - Habel, Wolfgang ED - Ramos, G. A. T1 - Structure-integrated fiber-optic strain wave sensor for concrete pile testing and monitoring N2 - Reinforced concrete piles are used in case of structures that are constructed on soft ground to transfer the loads into deeper strata with sufficient bearing capacity. In order to determine the pile’s behavior and possible damage, static and dynamic pile tests are carried out. Dynamic measurements taken from the pile head can show the bearing behavior and structural integrity by using the theory of wave propagation. In order to receive more precise information about the pile features, now, a string of sensors is embedded at different levels of the pile. A fiber optic strain wave sensor, based on the extrinsic Fabry-Perot interferometer (EFPI), has already been developed and tested in full-scale field tests by Schallert (2010). It was possible to detect the introduced deformation caused by the static load and the dilatational wave during dynamic loading. Although the full-scale tests were successful, the engineering design of the sensor body left room - from the economical point of view - to be optimized. After laboratory tests with the optimized sensor, a cast-in-situ bored pile has been built at the BAM Test Site Technical Safety in Horstwalde, South of Berlin. Additionally to the EFPI sensors, fiber Bragg grating (FBG) sensors, temperature sensors and resistance strain gauge (RSG) sensors are embedded in order to compare the signals with each other. In this paper, the modified sensor and the Setup of the cast-in-situ bored pile along with results of dynamic tests are shown. T2 - SHMII-5 - 5th International conference on structural health monitoring of intelligent infrastructure CY - Cancún, Mexico DA - 11.12.2011 KW - Fibre optic sensors KW - Monitoring KW - Concrete pile KW - Foundation KW - Integrity testing PY - 2011 IS - Topic_04.Cat_4.2-abs002 SP - 1 EP - 8 PB - National Autonomous University of Mexico CY - Mexico City AN - OPUS4-25142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors T2 - 5th European Workshop on Optical Fibre Sensors CY - Kraków, Poland DA - 2013-05-19 PY - 2013 AN - OPUS4-28826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Experimental qualification and validation of fibre optic strain sensors T2 - 22nd International Conference on Optical Fiber Sensors OFS 2012 CY - Beijing, China DA - 2012-10-15 PY - 2012 AN - OPUS4-27225 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze T1 - Concrete pile testing and monitoring using structure-integrated fibre-optic strain wave sensors T2 - Workshop on Civil Structural Health Monitoring (CSHM-4) "SHM systems supporting extension of the structures' service life" CY - Berlin, Germany DA - 2012-11-06 PY - 2012 AN - OPUS4-27226 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilder, Constanze A1 - Kohlhoff, Harald A1 - Hofmann, Detlef A1 - Habel, Wolfgang T1 - Structure-integrated fibre optic AE sensor for concrete pile testing and monitoring N2 - A highly resolving fibre optic sensor based on the Fabry-Perot technology has been developed for integration into concrete piles with the purpose of static and dynamic pile testing as well as monitoring. The paper presents the design of the sensitive element and first results of large-scale model pile tests. T2 - Photonics 2010 - 10th International conference on fiber optics & photonics CY - Guwahati, India DA - 2010-12-11 KW - Concrete-embedded fibre optic sensors KW - Fabry Perot sensor KW - Strain measurement KW - Dynamic pile testing KW - Pile integrity KW - Cast-in-place bored piles PY - 2010 SN - 978-81-309-1719-1 IS - 256_SEN_Schilder_C_1_full SP - 1 EP - 4 AN - OPUS4-23272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -