TY - JOUR A1 - Wurzler, Nina A1 - Hidde, Gundula A1 - Schenderlein, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Effect of organic conditioning layers adsorbed on stainless steel AISI 304 on the attachment and biofilm formation of electroactive bacteria Shewanella putrefaciens CN32 N2 - The initial attachment and subsequent biofilm formation of electroactive bac-teriaShewanella putrefaciensCN32 was investigated to clarify the influence oforganic conditioning layers. A selection of macromolecules and self-assembledmonolayers (SAMs) of different chain lengths and functional groups were pre-pared and characterized by means of infrared spectroscopy in terms of theirchemistry. Surface energy and Zeta (ζ-) potential of the conditioning layers wasdetermined with contact angle and streaming current measurements. Amongthe studied surface parameters, a high polar component and a high ratio ofpolar-to-disperse components of the surface energy has emerged as a successfulindicator for the inhibition of the initial settlement ofS. putrefacienson stainlesssteel AISI 304 surfaces. Considering the negative surface charge of planktonicS. putrefacienscells, and the strong inhibition of cell attachment by positivelycharged polyethylenimine (PEI) conditioning layers, our results indicate thatelectrostatic interactions do play a subordinate role in controlling the attach-ment of this microorganism on stainless steel AISI 304 surfaces. For the biofilmformation, the organization of the SAMs affected the local distribution of thebiofilms. The formation of three-dimensional and patchy biofilm networks waspromoted with increasing disorder of the SAMs. KW - Bacterial attachment KW - Conditioning films KW - Self-assembled monolayers KW - Stainless steel PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559887 VL - 4 IS - 1 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-55988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schenderlein, Matthias A1 - Dimper, Matthias A1 - Nicolai, K. A1 - Noack, R. A1 - Özcan Sandikcioglu, Özlem T1 - Monitoring early stage corrosion processes during biofilm formation N2 - To investigate early stage corrosion processes of stainless steel 1.4301 taking place during the biofilm formation of the organism Shewanella putrefaciens electrochemical impedance spectroscopy (EIS) in a multielectrode approach has been used. The multielectrode array consisted of up to 25 electrically isolated electrodes made of stainless steel wires of diameters ranging from 100 µm to 500 µm. They were connected to a multichannel microelectrode analyzer (MMA) electrically coupled through zero resistance ammeters. Current flow between electrodes in the array as well as changes in impedance of individual electrodes over time were recorded and analyzed with respect to the onset of localized corrosion and biofilm formation. The results were complemented by optical microscopy, SEM and AFM images which were taken immediately after the respective experiment. To verify that the multielectrode arrays correctly indicated the initial stages of the corrosion process and of biofilm formation they were introduced in a flow cell reaction vessel containing test specimens made from stainless steel 1.4301, which were checked regularly for signs of localized corrosion and biofilms. Preceding results with the multielectrode array in solutions containing high amounts of chloride ions and hydrogen peroxide at low pH also showed that it is possible with the MMA to monitor individual electrodes becoming local anodes as local corrosion set in, while the remaining electrodes predominantly acted as cathodes. T2 - 69th Annual Meeting of the International Society of Electrochemistry CY - Bologna, Italy DA - 02.09.2018 KW - Corrosion KW - Multielectrode KW - Biofilm KW - Monitoring KW - Stainless steel PY - 2018 AN - OPUS4-47095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -