TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H.R. A1 - Scheliga, F. T1 - Cyclization and dispersity of poly(alkylene isophthalate)s N2 - Poly(alkylene isophthalate)s were prepared by different methods, either in solution or in bulk. The SEC measurements were evaluated in such a way that all oligomers were included. In solution (monomer conc. 0.1–0.7 mol/L) large fractions of rings were formed and high dispersities (up to 12) were obtained, which disagree with theoretical predictions. Polycondensations in bulk did neither generate cyclics by 'back-biting' nor by end-to-end cyclization, when the maximum temperature was limited to 210 °C. The dispersities of these perfectly linear polyesters were again higher than the theoretical values. Regardless of the synthetic method monomeric cycles were never observed. Furthermore, SEC measurements performed in tetrahydrofuran and in chloroform and SEC measurements performed in three different institutes were compared. Finally, SEC measurements of five samples were performed with universal calibration and a correction factor of 0.71 ± 0.02 was found for normal calibration with polystyrene. KW - Cyclization KW - Polycondensation KW - Polyesters KW - Size exclusion chromatography KW - Cyclics KW - Dispersity KW - SEC KW - Universal calibration KW - MALDI mass spectrometry PY - 2016 DO - https://doi.org/10.1002/pola.27892 SN - 0360-6376 SN - 0887-624X VL - 54 IS - 1 SP - 197 EP - 208 PB - Wiley CY - Hoboken, NJ AN - OPUS4-33731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. ED - Shaplov, A. T1 - Cyclization and dispersity of polyesters N2 - Two classes of polyesters were prepared by irreversible polycondensations. The dependence of the dispersities on the experimental parameters such as synthetic method, chemical structure, molecular weight and initial monomer concentration was determined. At first it was demonstrated that it is essential for a correct calculation of Mn and Mw to include all oligomers down to the dimers in the evaluation of SEC curves. Furthermore, it was demonstrated for poly(e-caprolactone)s and polylactides that reversible polycondensations and ring-opening polymerizations with equilibration yield identical products. Finally, the dependence of the dispersity on various experimental Parameters was determined for equilibrated poly(e-caprolactone)s and polylactides. KW - Irreversible polycondensation KW - Polycaprolactone KW - Polylactide KW - Dispersity KW - MALDI-TOF MS PY - 2017 DO - https://doi.org/10.1002/masy.201600169 SN - 1022-1360 SN - 1521-3900 VL - 375 IS - 1 SP - Article 1600169, 1 EP - 6 PB - Wiley-VCH AN - OPUS4-42407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic Polylactides via Simultaneous Ring-Opening Polymerization and Polycondensation Catalyzed by Dibutyltin Mercaptides N2 - L-Lactide is polymerized in bulk at 160 8C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2-mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio-ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring-opening polymerization and polycondensation process including end-to-end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 8C. With SnSPF optically pure cyclic poly(L-lactide)s with high-molecular weights can be prepared at 160 8C. KW - Cyclopolymerization KW - Catalysts KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization PY - 2017 DO - https://doi.org/10.1002/pola.28762 VL - 55 IS - 22 SP - 3767 EP - 3775 PB - Wiley Periodicals AN - OPUS4-42600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen A1 - Scheliga, F. A1 - Lahcini, M. T1 - Poly(epsilon-caprolactone) by combined ring-opening polymerization and polycondensation N2 - Numerous water-initiated polymerizations of εCL are conducted in bulk with variation of catalyst, reaction time, and temperature. The conversions are determined by 1H NMR and the molar masses by SEC measurements. For polymerizations at 100 °C, Bi triflate and Hf triflate are used as catalysts, whereas at 140 °C, Al triflate, Sn(II) triflate, SnCl2, HfCl4, BiCl3, and LaCl3 are used. In addition to a closed reaction vessel, experiments are also performed with stirring in a vacuum. Under these conditions, the best catalyst (SnCl2) yields 2–3 times higher molar masses and mass spectra indicate a significant higher fraction of cyclic polymers. The results prove that a modification of the procedure may stimulate a polycondesation process without change of catalyst, time, and temperature. KW - Epsilon-Caprolactone KW - Cyclization KW - MALDI-TOF mass spectrometry KW - Polycondensations KW - Ring-opening polymerizations PY - 2012 DO - https://doi.org/10.1002/macp.201200061 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 14 SP - 1482 EP - 1488 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - About formation of cycles in Sn(II) octanoate-catalyzed polymerizations of lactides N2 - At first, formation of cycles in commercial poly(Llactide)s is discussed and compared with benzyl alcoholinitiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4-cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end-biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of L-lactide were performed with various diphenols as initiators/co-catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even-numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring-expansion polymerization (REP). The influence of temperature, time, co-catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(L-lactide)s weight average molecular weights (Mw’s) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of Initiator and catalyst and temperature on the formation of cyclic poly(Llactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization KW - Transesterification PY - 2018 DO - https://doi.org/10.1002/pola.29077 SN - 0887-624X VL - 56 IS - 17 SP - 1915 EP - 1925 PB - Wiley Periodicals Inc. AN - OPUS4-46052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(lactide)s via the ROPPOC method catalyzed by alkyl- or aryltin chlorides N2 - A comparison of tributyltin chloride, dibutyltin dichloride,and butyltin trichloride as catalysts of ring-opening polymerizations(ROPs) of l-lactides at 160°C in bulk reveals increasing reactivity in the above order, but only the least reactive catalysts, Bu3SnCl, yield a uniform reaction product, namely cyclic poly(L-lactide)s with weight average molecular weights (Mw ́s) in the range of 40,000–80,000. A comparison of dimethyltin , dibutyltin , and diphenyltin dichlorides resulted in the following order of reactivity: Me2SnCl2 190°C) is hindered even when only > 2% of GL is added. For polyglycolide containing a smaller amount of lactide complete solubility in hexafluoroisopropanol is only observed around and above 20 mol% of lactide. KW - Ring-expansion polymerization KW - Copolymerization KW - MALDI-TOF MS KW - L-lactide KW - Glycolide KW - Crystallization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520270 DO - https://doi.org/10.1002/macp.202000307 SN - 1022-1352 VL - 22 IS - 3 SP - 307 PB - WileyVCH AN - OPUS4-52027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - What does conversion mean in polymer science? N2 - The definition of the term “conversion” is discussed for a variety of polymer syntheses. It is demonstrated that in contrast to organic and inorganic chemistry several different definitions are needed in polymer science. The influence of increasing conversion on structure and topology of homo- and Copolymers is illustrated. Chain-growth polymerizations, such as radical polymerization or living anionic polymerizations of vinyl monomers, condensative chain polymerization, two and three-dimensional step-growth polymerizations, ring–ring or chain–chain equilibration and chemical modification of polymers are considered. KW - Polymers KW - Polymerization KW - Conversion KW - Polycondensation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523597 DO - https://doi.org/10.1002/macp.202100010 VL - 222 IS - 8 SP - 10 PB - Wiley VCH AN - OPUS4-52359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-opening polymerizations of L-Lactide catalyzed by zinc caprylate: Syntheses of cyclic and linear poly(L-lactide)s N2 - Alcohol-initiated ring-opening polymerizations (ROPs) of L-Lactide (LA) were conducted in bulk at 130 °C catalyzed by Zn acetate (ZnAc2), lactate (ZnLac2), or caprylate (ZnCap2). 11-undecenol (UND), 1-hydroxymethylnaphtalene (HMN), and 4-nitrobenzylalcohol (4NB) were used as alcohols. Whereas variation of the alcohols had little effect, the usefulness of the catalysts increased in the order: acetate < lactate < caprylate. Hence, further alcohol-initiated polymerizations were performed with ZnCap2 alone and with variation of the lactide/catalyst (LA/Cat) ratio. With increasing LA/Cat ratio higher fractions of cyclic poly(L-lactide) (PLA) were found, so that the measured degree of polymerization (DP) is considerably lower than the theoretical value (i.e., 2 x LA/alcohol). With neat ZnCap2 cyclic PLAs were the largely prevailing reaction products. For these cyclic PLAs weight average molar masses (Mw) up to 134,000 were obtained and an optical purity around 99% was indicated by 13C NMR spectroscopy and DSC measurements even after 48 h at 150 or 160 °C. KW - Cyclization KW - Lactide KW - Ring opening polymerization KW - Transesterification KW - Zinc catalyst KW - MALDI PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557565 DO - https://doi.org/10.1002/pol.20220328 SN - 2642-4150 SP - 1 EP - 10 PB - Wiley AN - OPUS4-55756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - Syntheses of Cyclic Poly(l-lactide)s by Means of Zinc-Based Ring-Opening Polymerization with Simultaneous Polycondensation (ROPPOC) Catalysts N2 - Ring-opening polymerizations of l-lactide are studied in bulk at 140 or 160 °C with zinc n-hexanoate, zinc 4-chlorothiophenolate, and zinc pentafluoro thiophenolate (ZnSPF) as catalysts. The reactivity increases in the given order. With all three catalysts a high fraction of cycles is obtained only at polymerization (annealing) times around 7 d. With ZnSPF weight average molecular weights (Mw) up to 178 000, a Tm around 199 °C and a 𝚫Hm around 99 J g−1 were achieved. The samples annealed for 4 or 7 d also display a saw tooth pattern of the mass peak distribution in the matrix-assisted laser desorption/ionization time of flight spectra indicating transesterification reactions across the surface of extended ring crystals. This process optimizes the thermodynamical properties of the crystalline cyclic polylactides and is responsible for the high Tm and 𝚫Hm values. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578264 DO - https://doi.org/10.1002/macp.202300070 SN - 1022-1352 SP - 202300070 PB - Wiley VHC-Verlag AN - OPUS4-57826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Polycondensation of poly(L-lactide) alkyl esters combined with disproportionation and symproportionation of the chain lengths N2 - Ring-opening polymerizations (ROPs) of l-lactide (LA) were performed with ethyl l-lactate or 11-bromoundecanol as initiators (In) and tin(II) ethyl hexanoate (SnOct2) as catalyst (Cat) using four different LA/In ratios (20/1, 40/1, 60/1, and 100/1). One series of ROPs was conducted in bulk at 120 °C, yielding PLAs with low dispersities (Ð ~ 1.2–1.4), and a second series was conducted in bulk at 160 °C, yielding higher dispersities (Ð ~ 1.3–1.9). Samples from both series were annealed for 1 or 14 days at 140 °C in the presence of SnOct2. Both polycondensation and disproportionation reactions occurred, so that all four samples tended to form the same type of molar mass distribution below 10,000 Da, regardless of their initially different number average molar masses (Mn). Both initiators gave nearly identical results. The thermodynamic control of all reversible transesterification processes favored the formation of crystallites composed of chains with a Mn around 3500–3700, corresponding to a crystal thickness of 10–13 nm. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600081 DO - https://doi.org/10.1002/pol.20240118 SN - 2642-4150 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -