TY - CONF A1 - Qiao, Linan A1 - Kasparek, Eva Maria A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Scheidemann, Robert T1 - Development of a finite element model for damping concrete under severe impact loads T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials (Proceedings) N2 - Finite element analysis (FEA) has been carried out for investigation of damping concrete under different impact loading conditions with a built-in material model and damage criteria available in FEA code ABAQUS. At first, all parameters for the selected material model had been derived from compression Tests of cubic specimens. After that, a validation was carried out with different static and dynamic penetration tests. Finally, a 5 meter real drop test with a 23 Mg cylindrical cask could successfully be simulated. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - Session D, Paper 127, 1 EP - 10 PB - Omnipress AN - OPUS4-29110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Kasparek, Eva Maria A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Dynamic penetration tests on shock absorbing damping concrete T2 - WM2014 Conference (Proceedings) T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 2014-03-02 KW - Drop test KW - Dynamic KW - Penetration KW - Damping concrete PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14166, 1 EP - 9 AN - OPUS4-31948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard T1 - Determination of material parameters of damping concrete under dynamic loading T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage (Proceedings) N2 - The safety and integrity of casks for radioactive waste in accidental scenarios is analysed by BAM Federal institute tor Materials Research and Testing. An accidental scenario in German interim storage facilities is the drop from a crane during the handling operation. To reduce the mechanical loads to the cask a shock absorbing footing with high energy absorption capability is used in these areas. In order to analyse and evaluate such impact scenarios of casks, numerical simulations are performed. For a comprehensive simulation of an accidental scenario the behaviour of the damping concrete footing has to be taken into account as well and therefor a material model is needed. Material parameters under different loading conditions are the basis for a numerical model. For that reason a government funded research project (Kasparek, 2012) was conducted to characterise damping concrete under quasi-static as well as highly dynamic impact loading conditions. The performed tests include compression tests with and without lateral constraint small-scale and midscale penetration tests with different indenters, and finally a full-scale drop test onto a damping concrete footing. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Drop test KW - Damping concrete KW - Material characterisation PY - 2015 SP - 1 EP - 9 AN - OPUS4-33492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -