TY - CONF A1 - Müller, Karsten A1 - Scheidemann, Robert A1 - Auster, Jürgen T1 - Mechanical testing of component size specimen under impact conditons N2 - For validation of structural integrity under normal and hypothetical accident conditions during transport and storage of radioactive material the Federal Institute for Materials Research and Testing (BAM) focuses its safety related scientific research on advanced mechanical safety assessment methods including simulation of high rate impact of model components and structures. A drop and crash test facility with an unyielding target and a load capacity of 1.200 kg was designed for materials testing of component size specimen under impact conditions at elevated and higher loading rates. The maximum drop height is 12 meters which enables impact velocities up to 15 m/s. An exactly falling test object or drop weight allows impact, bending, compression as well as crash and crush tests with maximum input energy of 118 kJ. An arresting unit has been developed to avoid multiple impacts during instrumented drop tests. The paper presents experimental techniques and examples of various measurement methods and advancements in order to assess assumption of materials and components behavior by definite displacement and stresses within mechanical testing. Instrumented drop weight tests are performed to complete materials data base and energy absorption of shock-absorbing materials and structures as well as to implement materials and structural parameters into FEA of reference structures. Furthermore, fracture mechanics parameters of thick walled DCI containers by means of dynamic bending tests are characterized by crack initiation and crack resistance behavior at the lowest operational temperature depending on the strain rate. T2 - PVP2013 - ASME 2013 Pressure vessels & piping division conference CY - Paris, France DA - 14.07.2013 KW - Component size KW - Impact test KW - Dynamic compression KW - J-integral PY - 2013 U6 - https://doi.org/10.1115/PVP2013-98000 IS - PVP2013-98000 SP - 1 EP - 7 AN - OPUS4-28893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Kasparek, Eva Maria A1 - Müller, Karsten ED - Grellmann, W. ED - Frenz, H. T1 - Experimentelle Untersuchungen an Prüfkörpern und Komponenten aus Dämpferbeton T2 - Tagung Werkstoffprüfung 2014 - Fortschritte in der Werkstoffprüfung für Forschung und Praxis - Werkstoffeinsatz, Qualitätssicherung und Schadensanalyse CY - Berlin, Germany DA - 2014-12-04 KW - Beton-Polymer Verbundwerkstoff KW - Dämpferbeton KW - Charakterisierung Materialverhalten KW - Dynamische Druckversuche KW - Concrete-polymer composite KW - Damping concrete KW - Characterisation material behaviour KW - Dynamic compression tests KW - Material characterisation PY - 2014 SN - 978-3-9814516-8-9 SN - 1861-8154 SP - 281 EP - 286 AN - OPUS4-32321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Ermittlung dynamischer Kennwerte von Dämpferbeton für die Simulation des Beanspruchungsverhaltens N2 - Die Sicherheit und Integrität von Verpackungen radioaktiver Stoffe wird anhand von numerischen Berechnungen bewertet. Bei einem Anprall oder Absturz sind die mechanischen Beanspruchungen auf die Behälter auch von den Eigenschaften des Untergrunds abhängig. Um potentielle Gefahren während der Verladung zu minimieren, wird energieabsorbierender Dämpferbeton in den Handhabungsbereichen nuklearer Lager eingesetzt. Zu einer umfassenden sicherheitstechnischen Analyse und Bewertung gehört die Berücksichtigung des Beanspruchungsverhaltens von Dämpferbeton. Hierfür ist ein numerisches Materialmodell notwendig, das in der Literatur bisher nicht vorlag. Die dafür notwendigen dynamischen Kennwerte sind in verschiedenen Druck- und Eindringversuchen ermittelt worden. Dazu wurden dynamische Druckversuche an würfelförmigen Prüfkörpern durchgeführt, sowie Eindringversuche mit unterschiedlichen Eindringkörpern und Dämpferbetonproben. Die experimentell ermittelten Kennwerte wurden verwendet, um ein Materialmodell für Dämpferbeton zu entwickeln und kritische Beanspruchungsszenarien numerisch zu berechnen. Um die Qualität des Materialmodells zu überprüfen, wurde ein realitätsnaher Fallversuch eines Behälters in Originalgröße auf ein lagertypisches Dämpferbetonfundament durchgeführt. In dem Beitrag sollen die unterschiedlichen Untersuchungen zur Ermittlung dynamischer Kennwerte sowie deren Ergebnisse dargestellt werden. Gezeigt werden ebenso numerische Nachberechnungen einzelner Versuche sowie die ausführliche Berechnung des Fallversuchs im Originalmaßstab. Experimentelle und numerische Ergebnisse aus der Simulation werden hier gegenübergestellt. T2 - Tagung Werkstoffprüfung 2016 CY - Neu-Ulm, Germany DA - 01.12.2016 KW - Druckversuche KW - Eindringversuche KW - Dynamisch KW - Simulation KW - Materialmodell KW - Dämpferbeton PY - 2016 SN - 978-3-514-00830-4 VL - 2016 SP - 149 EP - 154 PB - Stahleisen GmbH CY - Düsseldorf AN - OPUS4-38580 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Comparison of experimental results and numerical simulations of penetration tests with damping concrete N2 - The shock absorbing material damping concrete is for the foundation in dry interim storage facilities for radioactive waste in Germany. In case of a potential cask drop damping concrete minimizes the mechanical loads to the cask. In course of safety analyzes this accident scenario is considered by numerical simulations using the finite element method. To get reliable results of numerical simulations a suitable material model is needed to take the characteristics of damping concrete into account. Due to the lack of sufficient material knowledge a research project was started to characterize the material’s behavior under different load conditions. This paper presents the test program to analyze the material behavior of damping concrete which is characterized by large volume change and strain rate hardening dependence. The determined Parameters were used to adapt an existing material model of the FE-code ABAQUS®. This model has to handle the mechanical damage behavior of damping concrete which occurs under compression and shear loads during a potential cask drop. To verify the material model numerical simulations are compared with dynamic penetration tests, which were conducted with specimens assembled similar to the real application of the damping concrete footings. The transferability of the material model to a real accident scenario was verified by a drop test with a full-scale cask on a damping concrete footing. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Drop test KW - Damping concrete KW - Cask KW - Material model PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A034, 1 EP - 6 PB - The American Society of Mechanical Engineers CY - New York AN - OPUS4-44042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard T1 - Determination of material parameters of damping concrete under dynamic loading N2 - The safety and integrity of casks for radioactive waste in accidental scenarios is analysed by BAM Federal institute tor Materials Research and Testing. An accidental scenario in German interim storage facilities is the drop from a crane during the handling operation. To reduce the mechanical loads to the cask a shock absorbing footing with high energy absorption capability is used in these areas. In order to analyse and evaluate such impact scenarios of casks, numerical simulations are performed. For a comprehensive simulation of an accidental scenario the behaviour of the damping concrete footing has to be taken into account as well and therefor a material model is needed. Material parameters under different loading conditions are the basis for a numerical model. For that reason a government funded research project (Kasparek, 2012) was conducted to characterise damping concrete under quasi-static as well as highly dynamic impact loading conditions. The performed tests include compression tests with and without lateral constraint small-scale and midscale penetration tests with different indenters, and finally a full-scale drop test onto a damping concrete footing. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Drop test KW - Damping concrete KW - Material characterisation PY - 2015 SP - 1 EP - 9 AN - OPUS4-33492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Kasparek, Eva Maria A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Dynamic penetration tests on shock absorbing damping concrete T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 2014-03-02 KW - Drop test KW - Dynamic KW - Penetration KW - Damping concrete PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14166, 1 EP - 9 AN - OPUS4-31948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kasparek, Eva Maria A1 - Zencker, Uwe A1 - Scheidemann, Robert A1 - Völzke, Holger A1 - Müller, Karsten T1 - Numerical and experimental studies of polyurethane foam under impact loading N2 - Proper predictions of the behaviour of shock absorber materials are of utmost importance in safety assessments for licensing casks for transport and storage of highly active waste. After having identified significant discrepancies between numerical results and the actual response of polyurethane foam limiters subjected to accidental scenarios, a new research project ENREA was established by BAM. A major objective is to enhance and to develop advanced material models intended to simulate limiters under impact loading. They should account for all major factors influencing the load–deformation relationship like temperature, strain rate and specific stress state. The corresponding test program, applicable plasticity models, the overall parameter identification strategy based on local and global optimization techniques as well as experimental and numerical results are presented here in particular for closed cell foams. KW - Polyurethane foam KW - Limiter KW - Impact loading KW - Strain rate KW - Plasticity model KW - Parameter identification PY - 2011 U6 - https://doi.org/10.1016/j.commatsci.2010.11.025 SN - 0927-0256 VL - 50 IS - 4 SP - 1353 EP - 1358 PB - Elsevier CY - Amsterdam AN - OPUS4-23151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Kasparek, Eva Maria A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Model-sized and full-scale dynamic penetration tests on damping concrete N2 - Mechanical loading conditions of transport and storage casks for radioactive materials in accidental scenarios are highly affected by the behavior of both: the impact limiters and the footing materials. To minimize potential damages during the handling of casks, a so called damping concrete is frequently used for the footings in interim nuclear facilities. It obtains its shock absorbing properties through admixing of polymer cells. For a comprehensive mechanical evaluation of casks, advanced material models are also needed for damping concrete. In order to characterize the mechanical properties and to develop numerical material models, penetration tests were carried out at different test facilities of BAM. The tests contain static and dynamic penetration tests on cubic specimen with an edge length of 100 mm as well as mortared specimen with a size of 240 x 240 x 50 cm³. Indenters with different geometries and diameters were used for these model-sized penetration tests. Subsequently a full-scale cylindrical cast-iron indenter with a diameter of 110 cm was dropped of 5 m height on a realistic damping concrete footing. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Drop test KW - Dynamic KW - Penetration KW - Damping concrete PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -