TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Approach for a finite element material model for wood for application in mechanical safety cases of transport packages N2 - BAM Federal Institute for Materials Research and Testing is the competent authority for mechanical safety assessment of transport packages for radioactive material in Germany. The further development of state-of-the-art technology concerning assessment methods is essential for a qualified work of involved designers and authority experts. The paper gives an example of current development done to improve understanding and modeling capabilities of wood filled impact limiter. In order to reduce the loads applied to the package containment, which result from regulatory drop tests, most packages are protected by energy dissipating impact limiter. Wood, encapsulated by steel sheets, is one of the materials typically used for energy dissipation in these impact limiter. Very often, mechanical safety cases regarding the 9 m drop test are performed computationally, where it is essential to use reliable and verified computational methods and models. In this context, the paper presents an approach for a finite element material model for wood. Thereby, the mechanical behavior of wood under compression loading is the focus of the development work. Additionally, material orientation as well as strain rate, temperature and lateral constraint may vary. A large number of experiments, particularly compression tests, was designed and performed to establish an adequate experimental database for modeling verification. The experimental results enabled the derivation of necessary requirements: The material model has to take into account strain rate and temperature dependencies as well as the anisotropic characteristics of the material, a proper yield criterion, flow rule and hardening law. Such a material model is currently not available in established commercial dynamic finite element codes. Thus it is necessary to create a user-defined material model considering the mentioned requirements. A first step was done by determining a yield surface as well as detecting flow and hardening mechanisms from experimental force-deflection curves. In a next step the LS-DYNA material model MAT_75 was altered according to conclusions of former BAM development work, regarding the modeling of post-peak softening as a function of lateral constraint. Future research will contain the further development, implementation and verification of a material model for wood. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Impact limiter KW - Material model wood KW - Transport package PY - 2011 SP - 1 EP - 8 AN - OPUS4-24236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Crushing characteristics of spruce wood used in impact limiters of type B packages N2 - The material spruce wood is frequently used in impact limiters of Type B transport packages. In order to develop and parametrize an appropriate finite element material model, the crushing characteristics of spruce wood have been determined. A large number of crush tests was performed at BAM test facilities to generate a comprehensive data base. The parameter range in the crush test series results amongst others from the IAEA Regulations for the Safe Transport of Radioactive Material: e. g., the minimum temperature considered was -40 °C and the maximum strain rate applied was derived from the 9 m drop test. Cubical spruce wood specimens were tested using a servo hydraulic impact testing machine for initial strain rates of up to 30 1/s. A machine for guided drop tests was used for initial strain rates of up to 133 1/s. Drop masses of up to 1,200 kg were therefore used from drop heights of up to 9 m. The results presented in the paper include force-displacement characteristics and deformation behavior of spruce wood. Thereby the effects of strain rate, temperature, fiber-load orientation and lateral constraint are considered. Higher strain rates led to increasing crush forces, especially for loading perpendicular to the fiber. Higher temperature resulted in decreasing crush forces. The crush force level was significantly lower for load perpendicular to the fiber and the crushing characteristics differed compared to load parallel to the fiber. Without lateral constraint, the specimens expanded laterally, i. e. the plastic Poisson's ratio (if wood is considered a continuum) was not zero. Crush forces were comparably low and for load parallel to the fiber there was a significant softening effect. Lateral constraint of the specimens increased the crush force level and limited the softening effect. The results of the crush tests are used to derive modeling requirements and some assumptions for the development of a finite element material model for spruce wood. Possible future research work is pointed out. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Spruce wood KW - Crush test KW - Impact limiter PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Scheidemann, Robert A1 - Neumeyer, Tino A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Thightness Assessment of welded Lids for Encapsulations of damaged Spent Nuclear Fuel in the Design Approval Process of Dual-Purpose Casks (DPC) N2 - The disposal of spent nuclear fuel in Germany is ensured using dual-purpose casks (DPC) for transport and interim storage. The leak tightness of the DPC and resulting containment is one of the most important aspects. Additional encapsulations are required for damaged spent nuclear fuel (DSNF) to guarantee safe handling and a separate tight closure. Due to the general design of DPCs for standard fuel assemblies should special requirements be considered for the design of the encapsulations for DSNF to ensure the loading in existing package designs. The absence of a replaceable sealing in the tightness barrier is the main difference for the encapsulations for damaged spent nuclear fuel. Instead, they are welded shut with a lid. The leak tightness of the encapsulation shall be proven in the design approval process for all transport conditions. This is especially valid for accident conditions of transport, where high internal impact forces may occur. BAM as German competent authority is responsible for the safety assessment of mechanical and thermal design, retention of radioactive material and quality assurance aspects of manufacturing and operation. BAM carried out a comprehensive safety assessment concerning the mechanical package design. As there are no representative standards for verifying the leak tightness of a welded lid, two approaches were being pursued. Established German standards may be used for verifying the leak tightness of a weld - but limited to low stresses. Therefore, physical tests were required for higher impact loads. Representative drop tests and highly sensitive leakage tests were performed. The paper presents an overview of the containment assessment by BAM and points out the main findings for the design of welds regarding leak tightness. Both verification procedures are described, on one hand with German standards for lower loads and on the other hand with physical tests for higher impact loads. The leak tightness of the encapsulation weld could be approved based on leakage tests and a corresponding evaluation for all transport conditions. T2 - PATRAM 2025 CY - San Antonio, Texas, USA DA - 27.07.2025 KW - Transport packages KW - Tightness assessment KW - Welded lids KW - Encapsulations PY - 2025 VL - 2025 SP - 1 EP - 11 PB - Institute of Nuclear Materials Management (INMM) CY - Indianapolis AN - OPUS4-64023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Dynamic crushing characteristics of spruce wood under large deformations N2 - An extensive series of large deformation crushing tests with spruce wood specimens was conducted. Material orientation, lateral constraint and loading rate were varied. Regarding material orientation, a reduction in the softening effect and the general force level was observed with a higher fiber-load angle. A comparison with characteristics gained by application of Hankinson's formula showed discrepancies in compression strength and the beginning of the hardening effect. Lateral constraint of the specimens caused a multiaxial stress state in the specimens, which was quantified with the applied measuring method. Further, a higher force level compared to specimens without lateral constraint and significant hardening effect at large deformations resulted. Thus, the influence of a multiaxial stress state on the force level could be determined. An increase in the loading rate led to higher force levels at any displacement value and material orientation. KW - Crushing test KW - Dynamic crushing characteristics KW - Spruce wood KW - Lateral constraint KW - Multiaxial stress state KW - Hankinson's formula PY - 2013 DO - https://doi.org/10.1007/s00226-012-0508-5 SN - 0043-7719 SN - 1432-5225 VL - 47 IS - 2 SP - 369 EP - 380 PB - Springer CY - Berlin AN - OPUS4-27743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Kasparek, Eva Maria A1 - Völzke, Holger T1 - Stauchversuche mit querdehnungsbehinderten Fichtenholzproben verschiedener Faserorientierungen bei veränderlicher Dehnrate T1 - Compression tests with laterally constrained spruce specimens with varying fiber orientations and loading rates N2 - Im Zuge des Forschungsvorhabens ENREA (Entwicklung rechnerischer Analysemethoden für stoßdämpfende Strukturen beim Anprall oder Absturz von Abfallgebinden) führt die BAM systematische Untersuchungen an stoßdämpfenden Werkstoffen, unter anderem an Fichtenholz, durch. Zweck der mit diesen Untersuchungen erzeugten Datenbasis ist die Erstellung und Parametrierung eines Finite-Elemente- (FE-) Materialmodells, das die Modellierung holzgefüllter stoßdämpfender Bauteile von Transportbehältern für radioaktive Stoffe in der FE-Simulation ermöglichen soll. Anhand von Ergebnissen aus der ersten Versuchsphase werden der Einfluss der Dehnrate und der Faserorientierung auf das Kraft-Verformungs-Verhalten von Fichtenholz diskutiert. Anschließend wird die rechnerische Modellierung von Fichtenholz diskutiert und die Anforderungen an ein Materialmodell werden erläutert. N2 - In the course of research project ENREA (development of numerical methods for analyzing impact limiters subjected to impact or drop scenarios), BAM is systematically investigating impact limiting materials, e. g. spruce wood. Goal of these investigations is to establish and parameterize a finite element (FE) material model which enables the modeling of wood filled impact limiting devices of transport casks for radioactive materials. Using results of the first test stage, the effect of loading rate and fiber orientation on the force-deflection characteristics of spruce wood will be presented. Following, computational modeling of spruce wood including requirements for a material model will be discussed. T2 - KONTEC 2011 - 10. Internationales Symposium "Konditionierung radioaktiver Betriebs- und Stilllegungsabfälle" CY - Dresden, Germany DA - 06.04.2011 PY - 2011 N1 - Sprachen: Deutsch/Englisch - Languages: German/English SP - 465 EP - 478 AN - OPUS4-23684 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -